pytorch 搭建简单网络训练CIFAR-10数据集
CIFAR-10数据集是一个常用的彩色图片数据集,它有十个类别(‘plane’, ‘car’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘trunk’),每张图片都是3 x 32 x 32,即三通道彩色图片,分辨率为32 x 32
import torchvision as tv import torchvision.transforms as transforms from torchvision.transforms import ToPILImage show = ToPILImage() # 可以把 Tensor 转成 Image,方便可视化 # 定义对数据的预处理 transform = transforms.Compose([ transforms.ToTensor(), # 转为Tensor transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5) ) # 归一化 ]) # 训练集 trainset = tv.datasets.CIFAR10(root=r"C:Usersfoxdata", train=True, download=True, transform=transform) trainloader = t.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) # 测试集 testset = tv.datasets.CIFAR10(r"C:Usersfoxdata", train=False, download=True, transform=transform) testloader = t.utils.data.DataLoader( testset, batch_size=4, shuffle=False, num_workers=2) classes = (plane, car, bird, cat, deer, dog, frog, horse, ship, trunk) #定义网络 class Net(nn.Module): def __init__(self): super(Net, self).__init__() # 1:输入单通道 , 6:输出通道数 5:卷积核 self.conv1 = nn.Conv2d(3, 6, 5) # 卷积层 self.conv2 = nn.Conv2d(6, 16, 5) # 仿射层/全连接层, y = Wx + b self.fc1 = nn.Linear(16*5*5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): # 卷积 -> 激活 -> 池化 x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) x = F.max_pool2d(F.relu(self.conv2(x)), 2) # reshape -1 表示自适应 x = x.view(x.size()[0], -1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() # 定义损失函数和优化器 from torch import optim criterion = nn.CrossEntropyLoss() # 交叉熵损失函数 optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): # 输入数据 inputs, labels = data inputs, labels = Variable(inputs), Variable(labels) # 梯度清零 optimizer.zero_grad() # forward + backward outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() # 更新参数 optimizer.step() # 打印log信息 running_loss += loss.data if i % 2000 == 1999: # 每2000个batch打印一次训练状态 print([%d, %5d] loss: %.3f % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print(Finish training)
计算准确率
correct = 0 # 预测正确的图片书 total = 0 # 总共的图片数 for data in testloader: images, labels = data outputs = net(Variable(images)) _, predicted = t.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum() print("10000张测试集中的准确率为:%d %%" % (100 * correct / total)) print(correct, total)
上一篇:
通过多线程提高代码的执行效率例子
下一篇:
神经网络(三)分类器与线性模型