keras CNN卷积核可视化,热度图
卷积核可视化
import matplotlib.pyplot as plt
import numpy as np
from keras import backend as K
from keras.models import load_model
# 将浮点图像转换成有效图像
def deprocess_image(x):
# 对张量进行规范化
x -= x.mean()
x /= (x.std() + 1e-5)
x *= 0.1
x += 0.5
x = np.clip(x, 0, 1)
# 转化到RGB数组
x *= 255
x = np.clip(x, 0, 255).astype(uint8)
return x
# 可视化滤波器
def kernelvisual(model, layer_target=1, num_iterate=100):
# 图像尺寸和通道
img_height, img_width, num_channels = K.int_shape(model.input)[1:4]
num_out = K.int_shape(model.layers[layer_target].output)[-1]
plt.suptitle([%s] convnet filters visualizing % model.layers[layer_target].name)
print(第%d层有%d个通道 % (layer_target, num_out))
for i_kernal in range(num_out):
input_img = model.input
# 构建一个损耗函数,使所考虑的层的第n个滤波器的激活最大化,-1层softmax层
if layer_target == -1:
loss = K.mean(model.output[:, i_kernal])
else:
loss = K.mean(model.layers[layer_target].output[:, :, :, i_kernal]) # m*28*28*128
# 计算图像对损失函数的梯度
grads = K.gradients(loss, input_img)[0]
# 效用函数通过其L2范数标准化张量
grads /= (K.sqrt(K.mean(K.square(grads))) + 1e-5)
# 此函数返回给定输入图像的损耗和梯度
iterate = K.function([input_img], [loss, grads])
# 从带有一些随机噪声的灰色图像开始
np.random.seed(0)
# 随机图像
# input_img_data = np.random.randint(0, 255, (1, img_height, img_width, num_channels)) # 随机
# input_img_data = np.zeros((1, img_height, img_width, num_channels)) # 零值
input_img_data = np.random.random((1, img_height, img_width, num_channels)) * 20 + 128. # 随机灰度
input_img_data = np.array(input_img_data, dtype=float)
failed = False
# 运行梯度上升
print(####################################, i_kernal + 1)
loss_value_pre = 0
# 运行梯度上升num_iterate步
for i in range(num_iterate):
loss_value, grads_value = iterate([input_img_data])
if i % int(num_iterate/5) == 0:
print(Iteration %d/%d, loss: %f % (i, num_iterate, loss_value))
print(Mean grad: %f % np.mean(grads_value))
if all(np.abs(grads_val) < 0.000001 for grads_val in grads_value.flatten()):
failed = True
print(Failed)
break
if loss_value_pre != 0 and loss_value_pre > loss_value:
break
if loss_value_pre == 0:
loss_value_pre = loss_value
# if loss_value > 0.99:
# break
input_img_data += grads_value * 1 # e-3
img_re = deprocess_image(input_img_data[0])
if num_channels == 1:
img_re = np.reshape(img_re, (img_height, img_width))
else:
img_re = np.reshape(img_re, (img_height, img_width, num_channels))
plt.subplot(np.ceil(np.sqrt(num_out)), np.ceil(np.sqrt(num_out)), i_kernal + 1)
plt.imshow(img_re) # , cmap=gray
plt.axis(off)
plt.show()
运行
model = load_model(train3.h5) kernelvisual(model,-1) # 对最终输出可视化 kernelvisual(model,6) # 对第二个卷积层可视化
热度图
运行
from keras.applications.vgg16 import VGG16 from keras.applications.vgg16 import preprocess_input model = VGG16(weights=imagenet) data_img = image.img_to_array(image.load_img(elephant.png)) # VGG16预处理:RGB转BGR,并对每一个颜色通道去均值中心化 data_img = preprocess_input(data_img) img_show = image.img_to_array(image.load_img(elephant.png)) heatmaps(model, data_img, img_show)
elephant.png
结语
踩坑踩得我脚疼
上一篇:
通过多线程提高代码的执行效率例子
下一篇:
java实现数组字符插入问题
