时间序列分析 lstm_LSTM —时间序列分析
时间序列分析 lstm
Neural networks can be a hard concept to wrap your head around. I think this is mostly due to the fact that they can be used for so many different things such as classification, identification or just simply regression.
神经网络可能是一个难以理解的概念。 我认为这主要是由于它们可以用于许多不同的事情,例如分类,识别或仅用于回归。
In this article, we will look at how easy it is to set up a simple LSTM model. All you need is your helpful friend KERAS and some array of numbers to throw into it.
在本文中,我们将探讨建立一个简单的LSTM模型有多么容易。 您所需要的只是您乐于助人的朋友KERAS和一些数字。
First thing we always do? Import!
我们总是做的第一件事? 进口!
import math import pandas as pd import numpy as np#keras models from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM#scaler from sklNeural networks can be a hard concept to wrap your head around. I think this is mostly due to the fact that they can be used for so many different things such as classification, identification or just simply regression. 神经网络可能是一个难以理解的概念。 我认为这主要是由于它们可以用于许多不同的事情,例如分类,识别或仅用于回归。 In this article, we will look at how easy it is to set up a simple LSTM model. All you need is your helpful friend KERAS and some array of numbers to throw into it. 在本文中,我们将探讨建立一个简单的LSTM模型有多么容易。 您所需要的只是您乐于助人的朋友KERAS和一些数字。 First thing we always do? Import! 我们总是做的第一件事? 进口! import math import pandas as pd import numpy as np#keras models from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM#scaler from skl
上一篇:
通过多线程提高代码的执行效率例子