【Numpy学习】Numpy中ravel()和flatten()的区别
函数介绍:ravel和flatten是展平函数具体请看代码
import numpy as np b = np.arange(24).reshape(2,3,4) b array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) b.ravel() array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]) b.flatten() array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])
从代码上看ravel和flatten都是把多维数组展平变为一维数组的函数它们差别不大,但是具体来说ravel是原数据的一个视图(也可以理解为原来数据的引用,这么说便于理解真实情况下它们没有啥关系),对使用ravel处理后的数据对其进行修改原来的数据也会发生改变。与其对应的flatten就不是这样的它是新建立了一个存储空间存储展平之后的数据,对其做操作不会影响原数据。这是什么意思呢具体请见代码解释:
from numpy import * a = arange(12).reshape(3,4) print(a) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] # 创建一个和a相同内容的数组b b = a.copy() c = a.ravel() d = b.flatten() # 输出c和d数组 print(c) # [ 0 1 2 3 4 5 6 7 8 9 10 11] print(d) # [ 0 1 2 3 4 5 6 7 8 9 10 11] # 可以看到c和d数组都是扁平化后的数组,具有相同的内容 print(a is c) # False print(b is d) # False # 可以看到以上a,b,c,d是四个不同的对象 # 但因为c是a的一种展示方式,虽然他们是不同的对象,但在修改c的时候,a中相应的数也改变了 c[1] = 99 d[1] = 99 print(a) # [[ 0 99 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] print(b) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] print(c) # [ 0 99 2 3 4 5 6 7 8 9 10 11] print(d) # [ 0 99 2 3 4 5 6 7 8 9 10 11]
上一篇:
通过多线程提高代码的执行效率例子