pytorch入门(三)—— 前馈神经网络
前馈神经网络
常见的前馈神经网络有感知机(Perceptrons)、BP(Back Propagation)网络、RBF(Radial Basis Function)网络等。
感知器(又叫感知机)是最简单的前馈网络,它主要用于模式分类,也可用在基于模式分类的学习控制和多模态控制中。感知器网络可分为单层感知器网络和多层感知器网络。
BP网络是指连接权调整采用了反向传播学习算法的前馈网络。与感知器不同之处在于,BP网络的神经元变换函数采用了S形函数(Sigmoid函数),因此输出量是 0~1之间的连续量,可实现从输入到输出的任意的非线性映射。
RBF网络是指隐含层神经元由RBF神经元组成的前馈网络。RBF神经元是指神经元的变换函数为RBF(Radial Basis Function,径向基函数)的神经元。典型的RBF网络由三层组成:一个输入层,一个或多个由RBF神经元组成的RBF层(隐含层),一个由线性神经元组成的输出层。
代码实现
import torch as tr import torch.nn as nn import torchvision.datasets as dsets import torchvision.transforms as transforms import torch.utils.data as Data import matplotlib.pyplot as plt from torch.autograd import Variable input_size = 784 hidden_size = 500 num_classes = 10 num_epochs = 5 batch_size = 100 learning_rate = 0.001 train_dataset = dsets.MNIST(root=./data, train=True, transform=transforms.ToTensor(), download=True) test_dataset = dsets.MNIST(root=./data, train=False, transform=transforms.ToTensor()) train_loader = Data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = Data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True) class Net(nn.Module): """ net """ def __init__(self, input_size, hideen_size, num_classes): """ init """ super(Net, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size, num_classes) def forward(self, x): """ forward func """ out = self.fc1(x) out = self.relu(out) out = self.fc2(out) return out net = Net(input_size, hidden_size, num_classes) print(net) loss_func = nn.CrossEntropyLoss() optimizer = tr.optim.Adam(net.parameters(), lr=learning_rate) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): images = Variable(images.view(-1, 28*28)) labels = Variable(labels) optimizer.zero_grad() outputs = net(images) loss = loss_func(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print(Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f % (epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.item())) correct = 0 total = 0 for images, labels in test_loader: images = Variable(images.view(-1, 28*28)) outputs = net(images) _, predicted = tr.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum() print(Acdcuracy of the model on the 10000 test images: %d %% % (100 * correct / total)) for i in range(1,4): plt.imshow(train_dataset.train_data[i].numpy(), cmap=gray) plt.title(%i % train_dataset.train_labels[i]) plt.show() test_output = net(images[:20]) pred_y = tr.max(test_output, 1)[1].data.numpy().squeeze() print(prediction number, pred_y) print(real number, labels[:20].numpy()) tr.save(net.state_dict(), net.pkl)
上一篇:
通过多线程提高代码的执行效率例子
下一篇:
前端常用获取接口数据方法