机器学习——CART决策树——泰坦尼克还生还预测
利用CART分类器进行预测
读取数据
import pandas as pd data =pd.read_csv("train.csv")
查看数据
# 显示前五行 data.head() # 显示行数和列数 data.shape # 显示所有列的数据类型等信息 data.info()
# 显示类别Embarked特征列的所有取值及出现次数 data.Embarked.value_counts()
三、数据处理
1、缺失值处理
在查看数据发现特征Age和Embarked有缺失值
特征Age使用其均值补充
特征Embarked使用众数“S”进行补充
2、特征编码转换
大部分模型只能处理数值型数据
使用将非数值型转换可计算的编码
采用特征编码转换
生成N个二值特征列(取值0或1),每个对应一种取值
使用决策树模型,一般无须对特征进行缩放
# 缺失值处理 data.Age.fillna(data.Age.median(),inplace=True) data.Embarked.fillna(S,inplace=True) # 特征编码转换 data.Sex=data.Sex.map({female:0,male:1}) embarked_d=pd.get_dummies(data.Embarked,prefix=Embarked,drop_first=True) data=pd.concat([data,embarked_d],axis=1) # 将处理好的数据放入 feature_cols=[Pclass,Sex,Age,Embarked_Q,Embarked_S] X=data[feature_cols] y=data.Survived
四、训练和选择模型
数据集进行训练
from sklearn.tree import DecisionTreeClassifier treeclf = DecisionTreeClassifier(max_depth=3,random_state=1) treeclf.fit(X,y)
五、可视化决策树
import graphviz from sklearn import tree from graphviz import Digraph dot_data = tree.export_graphviz(treeclf,out_file=None,feature_names=feature_cols,class_names=Survived,filled=True,rounded=True,special_characters=True) graph=graphviz.Source(dot_data) graph.render(xgboost1) #输出pdf文件 graph
六、查看特征的重要性
pd.DataFrame({feature:feature_cols,importance:treeclf.feature_importances_})
七、模型评估
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size=0.3, random_state=4) from sklearn.model_selection import GridSearchCV parameters = {max_depth:[1,3,5,10,15,20,30]} tree_clf=GridSearchCV(DecisionTreeClassifier(),param_grid=parameters,scoring=accuracy) tree_clf.fit(X_train,y_train)
print(tree_clf.best_params_) print(tree_clf.best_score_)
y_pred=tree_clf.predict(X_test) from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report print(accuracy_score(y_test,y_pred)) print(classification_report(y_test,y_pred))
完整代码:
import pandas as pd data =pd.read_csv("train.csv") data.Age.fillna(data.Age.median(),inplace=True) data.Embarked.fillna(S,inplace=True) data.Sex=data.Sex.map({female:0,male:1}) embarked_d=pd.get_dummies(data.Embarked,prefix=Embarked,drop_first=True) data=pd.concat([data,embarked_d],axis=1) feature_cols=[Pclass,Sex,Age,Embarked_Q,Embarked_S] X=data[feature_cols] y=data.Survived from sklearn.tree import DecisionTreeClassifier treeclf = DecisionTreeClassifier(max_depth=3,random_state=1) treeclf.fit(X,y) import graphviz from sklearn import tree from graphviz import Digraph dot_data = tree.export_graphviz(treeclf,out_file=None,feature_names=feature_cols,class_names=Survived,filled=True,rounded=True,special_characters=True) graph=graphviz.Source(dot_data) graph pd.DataFrame({feature:feature_cols,importance:treeclf.feature_importances_}) from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, test_size=0.3, random_state=4) from sklearn.model_selection import GridSearchCV from sklearn.tree import DecisionTreeClassifier parameters = {max_depth:[1,3,5,10,15,20,30]} tree_clf=GridSearchCV(DecisionTreeClassifier(),param_grid=parameters,scoring=accuracy) tree_clf.fit(X_train,y_train) print(tree_clf.best_params_) print(tree_clf.best_score_) y_pred=tree_clf.predict(X_test) from sklearn.metrics import accuracy_score print(accuracy_score(y_test,y_pred)) print(classification_report(y_test,y_pred))
上一篇:
通过多线程提高代码的执行效率例子