focal loss 的 二分类以及多分类实现
1、tf 版本
# 二分类 def binary_focal_loss(gamma=2, alpha=0.25): alpha = tf.constant(alpha, dtype=tf.float32) gamma = tf.constant(gamma, dtype=tf.float32) def focal_loss_sigmoid(y_true, y_pred): labels = tf.cast(y_true, tf.float32) L=-labels*(1-alpha)*((1-y_pred)**gamma)*K.log(y_pred)- (1-labels)*alpha*(y_pred**gamma)*K.log(1-y_pred) return L return focal_loss_sigmoid
2、torch 版本
class FocalLoss(nn.Module): def __init__(self, gamma = 2, alpha = 1, size_average = True): super(FocalLoss, self).__init__() self.gamma = gamma self.alpha = alpha self.size_average = size_average self.elipson = 0.000001 def forward(self, logits, labels): """ cal culates loss logits: batch_size * labels_length * seq_length labels: batch_size * seq_length """ if labels.dim() > 2: labels = labels.contiguous().view(labels.size(0), labels.size(1), -1) labels = labels.transpose(1, 2) labels = labels.contiguous().view(-1, labels.size(2)).squeeze() if logits.dim() > 3: logits = logits.contiguous().view(logits.size(0), logits.size(1), logits.size(2), -1) logits = logits.transpose(2, 3) logits = logits.contiguous().view(-1, logits.size(1), logits.size(3)).squeeze() assert(logits.size(0) == labels.size(0)) assert(logits.size(2) == labels.size(1)) batch_size = logits.size(0) labels_length = logits.size(1) seq_length = logits.size(2) # transpose labels into labels onehot new_label = labels.unsqueeze(1) label_onehot = torch.zeros([batch_size, labels_length, seq_length]).scatter_(1, new_label, 1) # calculate log log_p = F.log_softmax(logits) pt = label_onehot * log_p sub_pt = 1 - pt fl = -self.alpha * (sub_pt)**self.gamma * log_p if self.size_average: return fl.mean() else: return fl.sum()