深度学习03——手写数字识别实例
0. 实验概述
(以图片中的二分类问题为例)
1.利用Tensorflow自动加载mnist数据集
代码:
import tensorflow as tf from tensorflow.keras import datasets, layers, optimizers (xs,ys),_ = datasets.mnist.load_data() # 自动下载mnist数据集 print(datasets:,xs.shape,ys.shape) xs = tf.convert_to_tensor(xs,dtype=tf.float32)/255. # 将mnist中的数据转为tensorflow格式 db = tf.data.Dataset.from_tensor_slices((xs,ys)) #将下载的数据存入datasets数据集 for step,(x,y) in enumerate(db): #单个数据输出 print(step,x.shape,y,y.shape)
代码切割分析:
2. 手写数字识别体验
2.1 准备网络结构与优化器
利用Sequential模块。
#准备网络结构与优化器 model = keras.Sequential([ #3层结构 layers.Dense(512, activation=relu), layers.Dense(256, activation=relu), layers.Dense(10)]) optimizer = optimizers.SGD(learning_rate=0.001)
2.2 计算损失函数与输出
with tf.GradientTape() as tape: # [b, 28, 28] => [b, 784] x = tf.reshape(x, (-1, 28*28)) # Step1. compute output # [b, 784] => [b, 10] out = model(x) # Step2. compute loss loss = tf.reduce_sum(tf.square(out - y)) / x.shape[0]
2.3 梯度计算与优化
# Step3. optimize and update w1, w2, w3, b1, b2, b3 grads = tape.gradient(loss, model.trainable_variables) # w = w - lr * grad optimizer.apply_gradients(zip(grads, model.trainable_variables))
2.4 循环
2.5 完整代码
import os import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, optimizers, datasets os.environ[TF_CPP_MIN_LOG_LEVEL]=2 #数据集的加载 (x, y), (x_val, y_val) = datasets.mnist.load_data() x = tf.convert_to_tensor(x, dtype=tf.float32) / 255. y = tf.convert_to_tensor(y, dtype=tf.int32) y = tf.one_hot(y, depth=10) print(x.shape, y.shape) train_dataset = tf.data.Dataset.from_tensor_slices((x, y)) train_dataset = train_dataset.batch(200) #一次加载200张图片 #准备网络结构与优化器 model = keras.Sequential([ #3层结构 layers.Dense(512, activation=relu), layers.Dense(256, activation=relu), layers.Dense(10)]) optimizer = optimizers.SGD(learning_rate=0.001) #计算迭代 def train_epoch(epoch): # Step4.loop for step, (x, y) in enumerate(train_dataset): with tf.GradientTape() as tape: # [b, 28, 28] => [b, 784] x = tf.reshape(x, (-1, 28*28)) # Step1. compute output # [b, 784] => [b, 10] out = model(x) # Step2. compute loss loss = tf.reduce_sum(tf.square(out - y)) / x.shape[0] # Step3. optimize and update w1, w2, w3, b1, b2, b3 grads = tape.gradient(loss, model.trainable_variables) # w = w - lr * grad optimizer.apply_gradients(zip(grads, model.trainable_variables)) if step % 100 == 0: print(epoch, step, loss:, loss.numpy()) def train(): #计算迭代30次 for epoch in range(30): train_epoch(epoch) if __name__ == __main__: train()
训练结果:
补充:os.environ[TF_CPP_MIN_LOG_LEVEL]
os.environ["TF_CPP_MIN_LOG_LEVEL"]的取值有四个:0,1,2,3,分别和log的四个等级挂钩:INFO,WARNING,ERROR,FATAL(重要性由左到右递增)
当os.environ["TF_CPP_MIN_LOG_LEVEL"]=0的时候,输出信息:INFO + WARNING + ERROR + FATAL 当os.environ["TF_CPP_MIN_LOG_LEVEL"]=1的时候,输出信息:WARNING + ERROR + FATAL 当os.environ["TF_CPP_MIN_LOG_LEVEL"]=2的时候,输出信息:ERROR + FATAL 当os.environ["TF_CPP_MIN_LOG_LEVEL"]=3的时候,输出信息:FATAL
上一篇:
JS实现多线程数据分片下载