yolov5 优化系列(三):修改损失函数

1.使用 Focal loss

在util/loss.py中,computeloss类用于计算损失函数

# Focal loss
        g = h[fl_gamma]  # focal loss gamma
        if g > 0:
            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)

其中这一段就是开启Focal loss的关键!!!

parser.add_argument(--hyp, type=str, default=ROOT / data/hyps/hyp.scratch-low.yaml, help=hyperparameters path)

使用的data/hyps/hyp.scratch-low.yaml为参数配置文件,进去修改fl_gamma即可

fl_gamma实际上就是公式中红色椭圆的部分 看看代码更易于理解:

def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        pred_prob = torch.sigmoid(pred)  # prob from logits
        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = (1.0 - p_t) ** self.gamma
        loss *= alpha_factor * modulating_factor

        if self.reduction == mean:
            return loss.mean()
        elif self.reduction == sum:
            return loss.sum()
        else:  # none
            return loss

调参上的技巧

1.1 增加alpha

focalloss其实是两个参数,一个参数就是我们前述的fl_gamma,同样的道理我们也可以增加fl_alpha来调节alpha参数 (1)进入参数配置文件 增加

fl_alpha: 0.95     # my focal loss alpha:nagetive example rate

(2)然后回到核心代码那里替换这一段

# Focal loss
        g = h[fl_gamma]  # focal loss gamma
        if g > 0:
            a=h[fl_alpha]
            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)

            # ————————————————使用Varifocal Loss损失函数———————————————————————————————————
            #BCEcls, BCEobj = VFLoss(BCEcls, g,a), VFLoss(BCEobj, g,a)
            # print(BCEcls)
            # print
            # ————————————————使用Varifocal Loss损失函数———————————————————————————————————

Varifocal 和foacl loss二选一,另一个注释掉就行

(2)使用Varifocal Loss

p输入为前景类的预测概率;q为ground-truth
class VFLoss(nn.Module):
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        super(VFLoss, self).__init__()
        # 传递 nn.BCEWithLogitsLoss() 损失函数  must be nn.BCEWithLogitsLoss()
        self.loss_fcn = loss_fcn  #
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = mean  # required to apply VFL to each element

    def forward(self, pred, true):

        loss = self.loss_fcn(pred, true)

        pred_prob = torch.sigmoid(pred)  # prob from logits
                                                                    #p
        focal_weight = true * (true > 0.0).float() + self.alpha * (pred_prob - true).abs().pow(self.gamma) * (
                    true <= 0.0).float()
        loss *= focal_weight

        if self.reduction == mean:
            return loss.mean()
        elif self.reduction == sum:
            return loss.sum()
        else:
            return loss

true:q,即为ground-truth (pred_prob - true):p,即前景类的预测概率

直接使用代码会报这个错 后面self.loss_fcn.reduction = mean修改为self.loss_fcn.reduction = none就没问题了

Focal loss和Varifocal Loss始终是不如原先的效果,可能很大一部分是参数问题

经验分享 程序员 微信小程序 职场和发展