open3d操作.ply文件(点云)
读取.ply文件
import open3d as o3d pcd=o3d.io.read_point_cloud(ply_path,format=ply) ppoints=np.asarray(pcd.points) pcolors=np.asarray(pcd.colors)
生成.ply文件
pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(xyz) o3d.io.write_point_cloud("../../TestData/sync.ply", pcd)
点云可视化
print("Load a ply point cloud, print it, and render it") ply_point_cloud = o3d.data.PLYPointCloud() pcd = o3d.io.read_point_cloud(ply_point_cloud.path) print(pcd) print(np.asarray(pcd.points)) o3d.visualization.draw_geometries([pcd], zoom=0.3412, front=[0.4257, -0.2125, -0.8795], lookat=[2.6172, 2.0475, 1.532], up=[-0.0694, -0.9768, 0.2024])
点云下采样
print("Downsample the point cloud with a voxel of 0.05") downpcd = pcd.voxel_down_sample(voxel_size=0.05) o3d.visualization.draw_geometries([downpcd], zoom=0.3412, front=[0.4257, -0.2125, -0.8795], lookat=[2.6172, 2.0475, 1.532], up=[-0.0694, -0.9768, 0.2024])
法线估计
print("Recompute the normal of the downsampled point cloud") downpcd.estimate_normals( search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30)) o3d.visualization.draw_geometries([downpcd], zoom=0.3412, front=[0.4257, -0.2125, -0.8795], lookat=[2.6172, 2.0475, 1.532], up=[-0.0694, -0.9768, 0.2024], point_show_normal=True)
颜色统一化
print("Paint chair") chair.paint_uniform_color([1, 0.706, 0]) o3d.visualization.draw_geometries([chair], zoom=0.7, front=[0.5439, -0.2333, -0.8060], lookat=[2.4615, 2.1331, 1.338], up=[-0.1781, -0.9708, 0.1608])
上一篇:
JS实现多线程数据分片下载
下一篇:
DEM数据下载——以地理空间数据云为例