用python做蒙特卡洛仿真算法

用python做蒙特卡洛仿真算法

  1. 在(0,1)区间里随机取两个数,求它们的差值小于0.5的概率。请编写python 程序,利用蒙特卡罗仿真方法来求解该问题。
  2. 在(0,1)区间里随机取两个数,求它们的平方和小于1的概率。请编写python 程序,利用蒙特卡罗仿真方法来求解该问题。
  3. 假设一个班上有30名同学,都是1997年出生,问其中至少有两名同学生日相同的概率是多少?(假设没有平年和闰年的区别,一年只有365天)请编写python 程序,利用蒙特卡罗仿真方法来求解该问题。 问题1代码: 思路: 在0到1之间打一万个点 找出他们之间差值小于0.5的点数 求出他们的比值即为概率
DARTS=10000
hits=0.0
for i in range(1,DARTS+1):
    x,y=random(),random()
    dis=abs(x-y)
    if dis<0.5:
        hits=hits+1
p=hits/DARTS
print("求出的值为{}".format(p))
print("理论值{}".format(0.75))

问题二代码: 思路: 跟上述问题类似,这里可以求出圆的面积所占的百分比

from random import random
import math
def x():
    DARTS = 10000
    hits = 0.0
    for i in range(1, DARTS + 1):
        x, y = random(), random()
        dis = x * x + y * y
        if dis < 1:
            hits = hits + 1
    p = (hits / DARTS)
    print("求出的值为{}".format(p))
    print("理论值为{}".format(math.pi / 4))
if __name__=="__main__":
    x()

问题3代码:思路 利用向类似的方法,并且去重复可以用集合, 从而判断是否有人的生日是否是同一天

from random import randint
import math
DARTS=10000
hits=0.0
for i in range(1,DARTS+1):
    a = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
    b = set()
    for m in range(30):
        a[m]=randint(1,365)
    for j in range(30):
        b.add(a[j])
    if len(b)<30:
        hits=hits+1
p=hits/DARTS
print("求出的值为{}".format(p))
s=1.0
for i in range(0,30):
    s*=(365-i)/365
print("理论值是{}".format(1-s))

理论值:

Lab1.1 理论值: 0.75

Lab1.2 理论值:pi / 4

Lab1.3 理论值:自己算法吧

经验分享 程序员 微信小程序 职场和发展