AI可能真的要代替插画师了……

下图左侧为通过属性blonde hair, twin tails, blush, smile, ribbon, red eyes生成的人物,右侧是通过属性silver hair, long hair, blush, smile, open mouth, blue eyes生成的人物,都表现得非常自然,完全看不出是机器自动生成的:

模型生成的随机样本:

固定cGAN噪声部分生成的样本,此时人物具有不同的属性,但是面部细节和面朝的角度基本一致:

打开网站后需要等待进度条加载完毕,这个时候是在下载模型:

这里的按钮的含义都比较简单,总的来说我们要先选定一些属性(完全随机也是可以的),然后点击左侧的generate按钮生成:

完全随机生成的结果,看起来非常好:

选择发色(Hair Color)为金色(Blonde),发型(Hair Style)为双马尾(Twin Tail),点击生成,效果同样很赞!如下图:

技术细节

我之前也写过两篇文章,一篇介绍了GAN的原理(),一篇介绍了cGAN的原理(),这两篇文章都是以生成二次元人物来举例,但是生成的结果都比较差,只能看出大概的雏形。今天的这篇论文大的技术框架还是cGAN,只是对原来的生成过程做了两方面的改进,一是使用更加干净、质量更高的数据库,二是GAN结构的改进,下面就分别进行说明。

改进一:更高质量的图像库

改进二:GAN结构

生成器G的结构类似于SRResNet(arxiv:):

判别器也要做一点改动,因为人物的属性相当于是一种多分类问题,所以要把最后的Softmax改成多个Sigmoid:

详细的训练和参数设定可以参照原论文。

一些问题

如下图,左侧为aqua hair, long hair, drill hair, open mouth, glasses, aqua eyes对应的样本,右侧为orange hair, ponytail, hat, glasses, red eyes, orange eyes对应的样本,相比使用常见属性生成的图片,这些图片的质量略差:

总结

这项工作确实令人印象深刻,生成的图片质量非常之高,个人认为如果加以完善,完全可以在某种程度上替代掉插画师的一部分工作。最后附上文中提到的一些资源:

    网站:MakeGirls.moe(已有训练好的模型,打开就可以尝试生成) 论文: Github:make.girls.moe(目前只有网站的js源码,看介绍训练模型的代码会在近期放出)

经验分享 程序员 微信小程序 职场和发展