理解主从设备模式(Master-Slave)
-
并行计算,以提升计算性能 容错处理,以提升计算的可靠性 计算精度,以提高计算的精确程度
并行计算下模式举例
在分布式的系统中,这个模式还是比较常用的,简单的说,主从(Master-Slave)与进程-线程的关系类似,Master只有一台机器作为Master,其他机器作为Slave,这些机器同时运行组成了集群.Master作为任务调度者,给多个Slave分配计算任务,当所有的Slave将任务完成之后,最后由Master汇集结果,这个其实也是MapReduce思想所在.
例如在Hadoop中,HDFS采用了基于Master/Slave主从架构的分布式文件系统,一个HDFS集群包含一个单独的Master节点和多个Slave节点服务器,这里的一个单独的Master节点的含义是HDFS系统中只存在一个逻辑上的Master组件。一个逻辑的Master节点可以包括两台物理主机,即两台Master服务器、多台Slave服务器。一台Master服务器组成单NameNode集群,两台Master服务器组成双NameNode集群,并且同时被多个客户端访问,所有的这些机器通常都是普通的Linux机器,运行着用户级别(user-level)的服务进程.
在上图中展示了 HDFS 的 NameNode , DataNode 以及客户端之间的存取访问关系, NameNode 作为 Master 服务,它负责管理文件系统的命名空间和客户端对文件的访问。NameNode会保存文件系统的具体信息,包括文件信息、文件被分割成具体block块的信息、以及每一个block块归属的DataNode的信息。对于整个集群来说,HDFS通过NameNode对用户提供了一个单一的命名空间。DataNode作为slave服务,在集群中可以存在多个。通常每一个DataNode都对应于一个物理节点。DataNode负责管理节点上它们拥有的存储,它将存储划分为多个block块,管理block块信息,同时周期性的将其所有的block块信息发送给NameNode
优缺点
-
优点:准确性——将服务的执行委托给不同的从设备,具有不同的实现。 缺点:从设备是孤立的,没有共享的状态。主-从通信中的延迟可能是一个问题,例如在实时系统中。这种模式只能应用于可以分解的问题。