Tensorflow(二十九) —— 卷积神经网络(CNN)
1. layers.BatchNormalization
import tensorflow as tf from tensorflow.keras import layers,optimizers import matplotlib.pyplot as plt # ************************ layers.BatchNormalization x = tf.random.normal([784,10],mean = 1,stddev=0.5) net = layers.BatchNormalization(axis = -1, center = True, scale = True, trainable = True) net(x,training = False).shape
2. 实战
x = tf.random.normal([2,3]) net = layers.BatchNormalization() out = net(x) print(out.shape) print(net.trainable_variables) print(net.variables) x = tf.random.normal([2,4,4,3],mean = 1,stddev=0.5) net = layers.BatchNormalization(axis = -1) out = net(x,training = False) print(net.variables) out1 = net(x,training = True) print(net.variables) for i in range(100): net(x,training = True) print(net.variables) # backward update optimizer = optimizers.Adam(lr = 1e-3) for i in range(10): with tf.GradientTape() as tape: out = net(x,training = True) loss = tf.reduce_mean(out**2) grads = tape.gradient(loss,net.trainable_variables) optimizer.apply_gradients(zip(grads,net.trainable_variables)) print(net.trainable_variables)
本文为参考龙龙老师的“深度学习与TensorFlow 2入门实战“课程书写的学习笔记
by CyrusMay 2022 04 18
上一篇:
JS实现多线程数据分片下载
下一篇:
Linux服务器查看Ip地址