支持向量机svm及python测试
from sklearn.svm import SVR,SVC from sklearn.datasets import load_boston from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import numpy as np #支持向量机 #波士顿房价回归分析 def svm_svr(): boston=load_boston() # x代表数据集,y代表分类标签 x_train, x_test, y_train, y_test = train_test_split(boston["data"], boston["target"], random_state=8) #对训练数据集核测试数据集进行标准化预处理 scaler=StandardScaler() scaler.fit(x_train) x_train_scaler=scaler.transform(x_train) x_test_scaler=scaler.transform(x_test) #linear核函数 svr=SVR(kernel=linear) svr.fit(x_train_scaler,y_train) print("linear核函数模型训练集得分:{}".format(svr.score(x_train_scaler,y_train))) print("linear核函数模型测试集得分:{}".format(svr.score(x_test_scaler, y_test))) #rbf核函数 svr=SVR(kernel=rbf,C=100,gamma=0.1) svr.fit(x_train_scaler,y_train) print("linear核函数模型训练集得分:{}".format(svr.score(x_train_scaler,y_train))) print("linear核函数模型测试集得分:{}".format(svr.score(x_test_scaler, y_test))) def svm_svc(): # 酒的分类 wine_dataset = load_wine() # x代表数据集,y代表分类标签 x_train, x_test, y_train, y_test = train_test_split(wine_dataset["data"], wine_dataset["target"], random_state=0) #对训练数据集核测试数据集进行标准化预处理 scaler=StandardScaler() scaler.fit(x_train) x_train_scaler=scaler.transform(x_train) x_test_scaler=scaler.transform(x_test) # linear核函数 svc = SVC(kernel=linear) svc.fit(x_train_scaler, y_train) print("linear核函数模型训练集得分:{}".format(svc.score(x_train_scaler, y_train))) print("linear核函数模型测试集得分:{}".format(svc.score(x_test_scaler, y_test))) # rbf核函数 svc = SVC(kernel=rbf, C=100, gamma=0.1) svc.fit(x_train_scaler, y_train) print("linear核函数模型训练集得分:{}".format(svc.score(x_train_scaler, y_train))) print("linear核函数模型测试集得分:{}".format(svc.score(x_test_scaler, y_test))) # 使用模型完成预测 x_news = np.array([[13.2, 2.77, 2.51, 18.5, 96.6, 1.04, 2.55, 0.57, 1.47, 6.2, 1.05, 3.33, 820]]) prediction = svc.predict(x_news) print(wine_dataset["target_names"][prediction])
下一篇:
用函数的递归实现n!