全面解析广告和推荐系统的两种架构
1.预测函数上线
但是这个架构有两个问题:
这种架构还有一个变种:在线下抽取特征之后不生成训练数据而是直接送到 Redis,在线上用 Storm 实时拼接训练数据。但我对这个变种的前因后果不太了解,就不展开讨论了。这种架构将预测函数(也就是训练出来的模型)部署在线上。为了和下面的架构区分开来,我们将这种架构称为预测函数上线架构。
2.预测结果上线
3.总结
预测函数上线架构能够覆盖预测结果上线架构的适用场景,但是预测结果上线架构不能够覆盖预测函数上线架构的适用场景。同时预测函数上线架构更具灵活性。预测函数上线架构不愧为部署机器学习模型的 “堂堂正正” 之法。
预测结果上线架构的好处就是难度比较低。预测结果上线架构将机器学习全过程和绝大部分控制逻辑,规避了线上的各种隐患。在机器、时间和人力等各种条件不充足的情况,预测结果上线架构不失为一个好的选择。预测结果上线架构是 “剑走偏锋” 的机器学习模型部署之法。兵法有云:以正合以奇胜,选择哪一种架构还是需要仔细的分析和权衡。
感谢您的观看,如有不足之处,欢迎批评指正。
在此我向大家推荐一个大数据开发交流圈:
658558542 ()
里面整理了一大份学习资料,全都是些干货,包括大数据技术入门,大数据离线处理、数据实时处理、Hadoop 、Spark、Flink、推荐系统算法以及源码解析等,送给每一位大数据小伙伴,让自学更轻松。这里不止是小白聚集地,还有大牛在线解答!欢迎初学和进阶中的小伙伴一起进群学习交流,共同进步!
最后祝福所有遇到瓶颈的大数据程序员们突破自己,祝福大家在往后的工作与面试中一切顺利。