开源-人脸识别认证-java封装

2.SeetaFace人脸识别引擎包括了搭建一套全自动人脸识别系统所需的三个核心模块, 2.1 人脸检测模块(SeetaFace Detection): 采用了一种结合传统人造特征与多层感知机(MLP)的级联结构,在FDDB上达到了84.4%的召回率(100个误检时),并可在单个i7 CPU上实时处理VGA分辨率的图像。 2.2 面部特征点定位模块(SeetaFace Alignment): 通过级联多个深度模型(栈式自编码网络)来回归5个关键特征点(两眼中心、鼻尖和两个嘴角)的位置,在AFLW数据库上达到state-of-the-art的精度,定位速度在单个i7 CPU上超过200fps。 2.3 人脸识别模块(SeetaFace Identification): 采用一个9层的卷积神经网络(CNN)来提取人脸特征,在LFW数据库上达到97.1%的精度(注:采用SeetaFace人脸检测和SeetaFace面部特征点定位作为前端进行全自动识别的情况下),特征提取速度为每图120ms(在单个i7 CPU上)。 2.4 seetaface的开源地址:https://github.com/seetaface/SeetaFaceEngine

2.SeetaFace人脸识别引擎包括了搭建一套全自动人脸识别系统所需的三个核心模块, 2.1 人脸检测模块(SeetaFace Detection): 采用了一种结合传统人造特征与多层感知机(MLP)的级联结构,在FDDB上达到了84.4%的召回率(100个误检时),并可在单个i7 CPU上实时处理VGA分辨率的图像。 2.2 面部特征点定位模块(SeetaFace Alignment): 通过级联多个深度模型(栈式自编码网络)来回归5个关键特征点(两眼中心、鼻尖和两个嘴角)的位置,在AFLW数据库上达到state-of-the-art的精度,定位速度在单个i7 CPU上超过200fps。 2.3 人脸识别模块(SeetaFace Identification): 采用一个9层的卷积神经网络(CNN)来提取人脸特征,在LFW数据库上达到97.1%的精度(注:采用SeetaFace人脸检测和SeetaFace面部特征点定位作为前端进行全自动识别的情况下),特征提取速度为每图120ms(在单个i7 CPU上)。 2.4 seetaface的开源地址:https://github.com/seetaface/SeetaFaceEngine
经验分享 程序员 微信小程序 职场和发展