快捷搜索: 王者荣耀 脱发

注意力机制-《动手学深度学习pytorch》

引入注意力机制原因

在“编码器—解码器(seq2seq)”⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息。

然而RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入的序列转化为定长的向量而保存所有的有效信息,所以随着所需翻译句子的长度的增加,这种结构的效果会显著下降。

与此同时,解码的目标词语可能只与原输入的部分词语有关,而并不是与所有的输入有关,注意力机制可以将这种选择过程显式地建模。

注意力机制框架

Attention 是一种通用的带权池化方法,输入由两部分构成:询问(query)和键值对(key-value pairs),输出的向量o则是value的加权求和,而每个key计算的权重与value一一对应。

点积注意力

多层感知机注意力

引入注意力机制的Seq2seq模型

本节中将注意机制添加到sequence to sequence 模型中,以显式地使用权重聚合states。下图展示encoding 和decoding的模型结构,在时间步为t的时候。此刻attention layer保存着encodering看到的所有信息——即encoding的每一步输出。在decoding阶段,解码器的tt时刻的隐藏状态被当作query,encoder的每个时间步的hidden states作为key和value进行attention聚合. Attetion model的输出当作成上下文信息context vector,并与解码器输入DtDt拼接起来一起送到解码器

Transformer

在之前的章节中,我们已经介绍了主流的神经网络架构如卷积神经网络(CNNs)和循环神经网络(RNNs)。让我们进行一些回顾:

    CNNs 易于并行化,却不适合捕捉变长序列内的依赖关系。 RNNs 适合捕捉长距离变长序列的依赖,但是却难以实现并行化处理序列。

为了整合CNN和RNN的优势, 创新性地使用注意力机制设计了Transformer模型。该模型利用attention机制实现了并行化捕捉序列依赖,并且同时处理序列的每个位置的tokens,上述优势使得Transformer模型在性能优异的同时大大减少了训练时间。

相关知识

1多头注意力层

2基于位置的前馈网络

3、Add and Norm相加归一化层

4位置编码 、解码器

经验分享 程序员 微信小程序 职场和发展