pytorch构建模型的整个流程
""" 流程: 1.使用torchvision加载并预处理数据集 2.定义网络 3.定义损失函数和优化器 4.训练网络并更新网络参数 5.测试网络 """ import torch as t import torchvision as tv import torchvision.transforms as transforms from torchvision.transforms import ToPILImage import matplotlib.pyplot as plt import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable show = ToPILImage() # 可以将tensor转换成Image,方便可视化 #print(show) # 加载数据集并对数据集预处理 # 定义对数据的预处理(转为tensor,以及归一化) transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))]) # 训练集 trainset = tv.datasets.CIFAR10(root=D:pytorch,train=True,download=False,transform=transform) trainloader = t.utils.data.DataLoader(trainset,batch_size=4,shuffle=True,num_workers=2) #测试集 testset = tv.datasets.CIFAR10(root=D:pytorch,train=False,download=False,transform=transform) testloader = t.utils.data.DataLoader(testset,batch_size=4,shuffle=False,num_workers=2) classes = (plane,car,bird,cat,deer,dog,frog,horse,ship,truck) #(data,label) = trainset[100] #print(classes[label]) #print(data) #show((data+1)/2).resize((100,100)) #定义网络 class Net(nn.Module): def __init__(self): # nn.Moulde子类的函数必须在构造函数中执行父类的构造函数 # 下式等价于nn.Mould.__init__(self) super(Net,self).__init__() self.conv1 = nn.Conv2d(3,6,5) # 卷积层3表示输入图片为3通道,6表示输出通道数,5表示卷积核为5*5 # 卷积层 self.conv2 = nn.Conv2d(6,16,5) # 全连接层 y=wx+b self.fc1 = nn.Linear(16*5*5,120) self.fc2 = nn.Linear(120,84) self.fc3 = nn.Linear(84,10) def forward(self,x): # 卷积 -> 激活 -> 池化 x = F.max_pool2d(F.relu(self.conv1(x)),(2,2)) x = F.max_pool2d(F.relu(self.conv2(x)),2) # reshape,-1表示自适应 x = x.view(x.size()[0],-1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x if __name__ == __main__: net = Net() #print(net) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(),lr=0.001,momentum=0.9) # 训练网络(包括输入数据,前向传播+反向传播,更新参数) for epoch in range(2): running_loss=0.0 for i,data in enumerate(trainloader,0): #输入数据 #print(data) inputs,lables = data inputs,lables = Variable(inputs),Variable(lables) #梯度清零 optimizer.zero_grad() #前向传播+反向传播 outputs = net(inputs) loss = criterion(outputs,lables) loss.backward() #更新参数 optimizer.step() #打印log信息 running_loss += loss.item() if i%2000 == 1999: # 每2000个batch打印一次训练状态 print([%d,%5d] loss:%.3f % (epoch+1,i+1,running_loss/2000)) running_loss = 0.0 print("Finished Training") # 开始测试训练效果 dataiter = iter(testloader) images,lables = dataiter.next() # 一个batch返回4张图片 print(实际的label: , .join(%08s % classes [lables[j]] for j in range(4))) # 接着计算网络预测的lable # 计算图片在每个类别上的分数 outputs = net(Variable(images)) # 得分最高的那个类 _,predicted = t.max(outputs.data,1) print(预测结果: , .join(%5s% classes [predicted[j]] for j in range(4))) #查看整个测试集上面的效果 correct = 0 #预测正确的图片数 total = 0 #总共的图片数 for data in testloader: images,lables = data outputs = net(Variable(images)) _, predicted = t.max(outputs.data, 1) total += lables.size(0) correct += (predicted == lables).sum() print(10000张测试集中的准确率:%d %% % (100*correct/total))
上一篇:
JS实现多线程数据分片下载
下一篇:
未来人工智能,将会替代人类的十大职业