python实现人脸识别 人脸匹配
import numpy as np import cv2 import time import face_recognition # Threshold = 0.65 # 人脸置信度阈值 #windows用户: #Just install dlib and face_recognition (not always on the newest version): #pip install dlib and then pip install face_recognition. 功能:计算两张图片的相似度,范围:[0,1] 输入: 1)人脸A的特征向量 2)人脸B的特征向量 输出: 1)sim:AB的相似度 def simcos(A,B): A=np.array(A) B=np.array(B) dist = np.linalg.norm(A - B) # 二范数 sim = 1.0 / (1.0 + dist) # return sim 功能: 输入: 1)x:人脸库向量(n维) 2)y:被测人脸的特征向量(1维) 输出: 1)match:与人脸库匹配列表,如[False,True,True,False] 表示被测人脸y与人脸库x的第2,3张图片匹配,与1,4不匹配 2)max(ressim):最大相似度 def compare_faces(x,y,Threshold): ressim = [] match = [False]*len(x) for fet in x: sim = simcos(fet,y) ressim.append(sim) if max(ressim) > Threshold: #置信度阈值 match[ressim.index(max(ressim))] = True return match,max(ressim) 注册身份 输入: 1)libpath:人脸库地址 输出: 1)known_face_encodings:人脸库特征向量 2)known_face_names:人脸库名字标签 def registeredIdentity(libpath): known_face_encodings, known_face_names = [], [] with open(libpath + liblist.txt, r) as f: lines = f.readlines() for line in lines: img_lable_name = line.split() image = face_recognition.load_image_file(libpath + str(img_lable_name[0])) face_locations = face_recognition.face_locations(image) # face_locations = face_recognition.face_locations(image, model=cnn) face_encoding = face_recognition.face_encodings(image, face_locations)[0] # face_encoding = face_recognition.face_encodings(image, face_locations) known_face_encodings.append(face_encoding) known_face_names.append(str(img_lable_name[1])) return known_face_encodings, known_face_names 输入: 1)testimg:测试图片 2)known_face_encodings:人脸库特征向量 3)known_face_names:人脸库名字标签 输出: 1)retname:预测的名字 2)retscore:相似度得分 3)face_locations:人脸位置坐标 def identityRecognition(testimg,known_face_encodings,known_face_names,Threshold): face_locations = face_recognition.face_locations(testimg) # face_locations = face_recognition.face_locations(testimg, model="cnn") face_encodings = face_recognition.face_encodings(testimg, face_locations) retname, retscore = "Noface", 0 for face_encoding in face_encodings: matches, score = compare_faces(known_face_encodings, face_encoding,Threshold) retname, retscore = "Unknow", 0 if True in matches: first_match_index = matches.index(True) name = known_face_names[first_match_index] if score > retscore: retname = name retscore = score return retname, retscore,face_locations 输入: 1)img:摄像头得到的未裁剪图片 2)face_locations:人脸位置坐标 3) name:预测的名字 输出: img:加框加年龄备注之后的画面 def age_show(img , face_locations,name): for (y0, x1, y1, x0) in face_locations: cv2.rectangle(img, (x0, y0), (x1, y1), ( 0, 0,255), 2) info = str(name) t_size = cv2.getTextSize(str(info), cv2.FONT_HERSHEY_PLAIN, 1, 2)[0] x2,y2 = x0 + t_size[0] + 3, y0 + t_size[1] + 4 cv2.rectangle(img, (x0,y0), (x2,y2), (0, 0, 255), -1) # -1填充作为文字框底色 cv2.putText(img, info, (x0, y0 +t_size[1]+4), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 0), 1) return img #4个接口 #人脸检测:face_recognition.face_locations(img, number_of_times_to_upsample=1, model="hog") #检测面部特征点: face_landmarks(face_image, face_locations=None, model="large") #给脸部编码:face_encodings(face_image, known_face_locations=None, num_jitters=1) #从编码中找出人的名字:compare_faces(known_face_encodings, face_encoding_to_check, tolerance=0.6)
下一篇:
计算机专业的学生可以考哪些证书