Python制作关键字云+情感分析图
1、关键字云:
首先导入的需要的包:
import matplotlib.pyplot as plt from wordcloud import WordCloud import jieba
创建一个方法生成关键字云:
def createWordcloud(path):
# 打开content.txt文件,并将编码设为utf-8
f = open(path, r, encoding=utf-8).read()
# jieba分词
cut_text = .join(jieba.cut(f))
wc= WordCloud(
# 设置字体
font_path=C://Windows//Fonts//msyh.ttc,
# 设置背景
background_color="white", width=3000, height=2500).generate(cut_text)
plt.imshow(wc, interpolation=bilinear)
plt.axis("off")
plt.show()
wc.to_file(你的保存路径//1.jpg)
在main方法中对参数传值:
if __name__ == __main__:
# 要读取的文件
path_txt = 你的文件路径//content.txt
createWordcloud(path_txt)
结果:
2、情感分析:
首先导入需要的包:
import matplotlib.pyplot as plt from snownlp import SnowNLP import pandas as pd
创建一个方法生成情感分析图,并在main方法中对参数传值:
import matplotlib.pyplot as plt
from snownlp import SnowNLP
import pandas as pd
def createSnowNLO(path):
txt = open(path, r, encoding=UTF-8)
text = txt.readlines()
txt.close()
print(读入成功)
sentences = []
senti_score = []
for i in text:
a1 = SnowNLP(i)
a2= a1.sentiments
sentences.append(i)
#语序...
senti_score.append(a2)
table = pd.DataFrame(sentences, senti_score)
plt.plot(senti_score, linestyle=-)
plt.show()
if __name__ == __main__:
path_txt = r你的文件路径content.txt
createSnowNLO(path_txt)
结果:
