CMIP6数据处理方法与典型案例分析

国际耦合模式比较计划进入新的阶段——第六阶段(CMIP6),这将为气候变化研究领域提供更丰富的全球气候模式数据。相比于 CMIP5,CMIP6 模式有两个主要的特点:一是 CMIP6 考虑的过程更为复杂,很多模式实现了大气化学过程的双向耦合;二是大气和海洋模式的分辨率显著提高,其中大气模式的最高水平分辨率可达到全球25km。除此,CMIP5 的 RCP 情景只考虑了未来100年达到稳定CO2浓度以及相应辐射强迫的目标,并没有针对特定的社会发展路径,而CMIP6中的新的共享社会经济路径充分考虑了这一点,提供了更加多样化的排放情景,可以对减缓适应研究以及区域气候预估提供更加合理的模拟结果,因此在很大程度上弥补了CMIP5中RCP情景的不足。

在国际耦合模式比较计划中,GCM 为构建气候变化提供了全球大尺度的信息,但是在针对区域尺度开展气候研究时,相对较低的分辨率信息对区域气候变化预估产生较大偏差.降尺度方法在将大尺度信息转化为区域尺度上发挥着重要作用,包括动力降尺度、统计降尺度以及二者相结合的方法等。

CMIP6月数据(500G+)

包含变量:温压湿风辐射降水

包含情景:historical、ssp126、ssp245、ssp370、ssp585

CMIP6日数据(1.8T+)

包含变量:温压湿风辐射降水

包含情景:historical、ssp126、ssp245、ssp370、ssp585

全球VIPPHEN物候数据(40G+)

时间:1981-2014,年数据

空间分辨率:5.6km

ERA5-LAND陆面再分析数据(5T左右)

时间:1951.1.1-2021.12.31 时间分辨率:hourly

空间分辨率:0.1°(等角lonlat投影+wgs84)

包含11个变量:温度、气压、辐射、蒸发、降水、湿度【详情见数据说明文件】

数据获取方式查看链接:

经验分享 程序员 微信小程序 职场和发展