实现斐波那契数列的几种方法

1.什么是斐波那契数列?

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、55、89……

其规律很明显,从第3个数开始,每个数都等于它前两个数的和。

2.递归法

解决斐波那契数列问题最常见的就是递归法

public class Fib {
          
   
    public static int fibonacci(int n) {
          
   
        if(n == 0 || n==1) {
          
   
            return 1;
        }
        if (n<0){
          
   
            System.out.println("不能输入负数");return -1;
        }
        return fibonacci(n-1) + fibonacci(n-2);
    }

    public static void main(String[] args) {
          
   
        System.out.println( fibonacci( 5) );
    }
}

优点:代码简单 缺点:时间复杂度高 当n接近50时,idea运行窗口要运行很久

3.数组法

public class Fib {
          
   
    //斐波那契下标从零开始
    public static void fibonacci(int n) {
          
    //静态方法,可直接调用
        int[] arr=new int[100];
        arr[0]=1;
        arr[1]=1;
        for (int i = 0; i <=n; i++) {
          
   
            if (i>1){
          
   
                arr[i]=arr[i-2]+arr[i-1];
            }
        }
        System.out.println(arr[n]);
    }

    public static void main(String[] args) {
          
   
        fibonacci( 10); //输出下标为10的斐波那契数列
    }
}

优点:时间复杂度低 缺点:代码比递归难

4.for循环法

public class Fib3 {
          
   
    public static int fibonacci(int n) {
          
   
        if (n==0||n==1){
          
   
            return 1;
        }
        if (n<0){
          
   
            System.out.println("不能输入负数");
            return -1;
        }
        //定义三个整数型变量
        int a=1,b=1,c=0;
        for (int i = 1; i <n ; i++) {
          
   
            c=a+b;  //第3个数的值等于前两个数的和
            a=b;    //第2个数的值赋值给第1个数
            b=c;    //第3个数的值赋值给第2个数

        }
        return c;
    }

    public static void main(String[] args) {
          
   
        System.out.println( fibonacci( 10 ) );
    }

}

优点:时间复杂度低
缺点:代码多

5.尾递归法

public class Fib {
          
   
    public static int fibonacci(int pre,int res,int n) {
          
   
        if (n<=1){
          
   
            return res;
        }
        return fibonacci( res,res+pre,n-1 );
    }

    public static void main(String[] args) {
          
   
        int i=fibonacci( 1,1,5 );
        System.out.println(i);

    }
}

优点:用法高级,空间复杂度低 缺点:不好理解

经验分享 程序员 微信小程序 职场和发展