使用朴素贝叶斯算法进行垃圾邮件分类。
问:给出一个基于java语言的小型AI案例,并给出各部分的代码
答
下面是一个基于Java语言的小型AI案例,使用朴素贝叶斯算法进行垃圾邮件分类。
代码示例如下:
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
public class SpamClassifier {
private Map<String, Integer> spamWordsCount;
private Map<String, Integer> hamWordsCount;
private int totalSpamCount;
private int totalHamCount;
public SpamClassifier() {
spamWordsCount = new HashMap<>();
hamWordsCount = new HashMap<>();
totalSpamCount = 0;
totalHamCount = 0;
}
public void train(String filePath, String label) throws IOException {
BufferedReader reader = new BufferedReader(new FileReader(filePath));
String line;
while ((line = reader.readLine()) != null) {
String[] words = line.split(" ");
for (String word : words) {
if (label.equals("spam")) {
spamWordsCount.put(word, spamWordsCount.getOrDefault(word, 0) + 1);
totalSpamCount++;
} else {
hamWordsCount.put(word, hamWordsCount.getOrDefault(word, 0) + 1);
totalHamCount++;
}
}
}
reader.close();
}
public double classify(String message) {
double spamProbability = 0.0;
double hamProbability = 0.0;
String[] words = message.split(" ");
for (String word : words) {
int spamWordCount = spamWordsCount.getOrDefault(word, 0);
int hamWordCount = hamWordsCount.getOrDefault(word, 0);
spamProbability += Math.log((spamWordCount + 1.0) / (totalSpamCount + spamWordsCount.size()));
hamProbability += Math.log((hamWordCount + 1.0) / (totalHamCount + hamWordsCount.size()));
}
return spamProbability > hamProbability ? spamProbability : hamProbability;
}
public static void main(String[] args) throws IOException {
SpamClassifier classifier = new SpamClassifier();
// 训练垃圾邮件样本
classifier.train("spam_samples.txt", "spam");
// 训练非垃圾邮件样本
classifier.train("ham_samples.txt", "ham");
// 测试邮件
String testMessage = "Get a free gift! Limited time offer!";
double probability = classifier.classify(testMessage);
if (probability > 0) {
System.out.println("The message is classified as spam.");
} else {
System.out.println("The message is classified as ham.");
}
}
}
在上面的示例中,train方法用于训练垃圾邮件和非垃圾邮件样本,通过读取文件中的文本内容,统计每个单词在垃圾邮件和非垃圾邮件中的出现次数。classify方法用于对给定的邮件内容进行分类,计算垃圾邮件和非垃圾邮件的概率,并返回概率较高的分类结果。
在main方法中,我们首先创建SpamClassifier对象,然后使用train方法分别训练垃
圾邮件和非垃圾邮件样本。接下来,我们使用classify方法对一个测试邮件进行分类,并根据概率结果输出分类结果。
请注意,上述代码示例仅为一个简单的垃圾邮件分类器,仅供演示用途。实际的垃圾邮件分类器可能需要更复杂的特征提取和模型训练过程,以及更大规模的数据集来提高分类准确率。
