数据挖掘系列(6)决策树分类算法

  这篇先介绍分类问题的一些基本知识,然后主要讲述决策树算法的原理、实现,最后利用决策树算法做一个泰坦尼克号船员生存预测应用。

一、分类基本介绍

  物以类聚,人以群分,分类问题只古以来就出现我们的生活中。分类是数据挖掘中一个重要的分支,在各方面都有着广泛的应用,如医学疾病判别、垃圾邮件过滤、垃圾短信拦截、客户分析等等。分类问题可以分为两类:

      归类:归类是指对离散数据的分类,比如对根据一个人的笔迹判别这个是男还是女,这里的类别只有两个,类别是离散的集合空间{男,女}的。   预测:预测是指对连续数据的分类,比如预测明天8点天气的湿度情况,天气的湿度在随时变化,8点时的天气是一个具体值,它不属于某个有限集合空间。预测也叫回归分析,在金融领域有着广泛应用。

  虽然对离散数据和连续数据的处理方式有所不同,但其实他们之间相互转化,比如我们可以根据比较的某个特征值判断,如果值大于0.5就认定为男性,小于等于0.5就认为是女性,这样就转化为连续处理方式;将天气湿度值分段处理也就转化为离散数据。

  数据分类分两个步骤:

  1. 构造模型,利用训练数据集训练分类器;
  2. 利用建好的分类器
  这篇先介绍分类问题的一些基本知识,然后主要讲述决策树算法的原理、实现,最后利用决策树算法做一个泰坦尼克号船员生存预测应用。 一、分类基本介绍   物以类聚,人以群分,分类问题只古以来就出现我们的生活中。分类是数据挖掘中一个重要的分支,在各方面都有着广泛的应用,如医学疾病判别、垃圾邮件过滤、垃圾短信拦截、客户分析等等。分类问题可以分为两类:   归类:归类是指对离散数据的分类,比如对根据一个人的笔迹判别这个是男还是女,这里的类别只有两个,类别是离散的集合空间{男,女}的。   预测:预测是指对连续数据的分类,比如预测明天8点天气的湿度情况,天气的湿度在随时变化,8点时的天气是一个具体值,它不属于某个有限集合空间。预测也叫回归分析,在金融领域有着广泛应用。   虽然对离散数据和连续数据的处理方式有所不同,但其实他们之间相互转化,比如我们可以根据比较的某个特征值判断,如果值大于0.5就认定为男性,小于等于0.5就认为是女性,这样就转化为连续处理方式;将天气湿度值分段处理也就转化为离散数据。   数据分类分两个步骤: 构造模型,利用训练数据集训练分类器; 利用建好的分类器
经验分享 程序员 微信小程序 职场和发展