力扣303.区域和检索 - 数组不可变(前缀和解法)
题目:
给定一个整数数组 nums,处理以下类型的多个查询: 计算索引 left 和 right (包含 left 和 right)之间的 nums 元素的 和 ,其中 left <= right 实现 NumArray 类: NumArray(int[] nums) 使用数组 nums 初始化对象 int sumRange(int i, int j) 返回数组 nums 中索引 left 和 right 之间的元素的 总和 ,包含 left 和 right 两点(也就是 nums[left] + nums[left + 1] + … + nums[right] )
示例:
输入: [“NumArray”, “sumRange”, “sumRange”, “sumRange”] [[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]] 输出: [null, 1, -1, -3]
解释: NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]); numArray.sumRange(0, 2); // return 1 ((-2) + 0 + 3) numArray.sumRange(2, 5); // return -1 (3 + (-5) + 2 + (-1)) numArray.sumRange(0, 5); // return -3 ((-2) + 0 + 3 + (-5) + 2 + (-1))
解题代码:
class NumArray { // 前缀和数组 private int[] preSum; /* 输入一个数组,构造前缀和 */ public NumArray(int[] nums) { // preSum[0] = 0,便于计算累加和 preSum = new int[nums.length + 1]; // 计算 nums 的累加和 for (int i = 1; i < preSum.length; i++) { preSum[i] = preSum[i - 1] + nums[i - 1]; } } /* 查询闭区间 [left, right] 的累加和 */ public int sumRange(int left, int right) { return preSum[right + 1] - preSum[left]; } }
核心思路:
我们new一个新的数组preSum出来,preSume[i]记录nums[0···i-1]的累加和,看图: