python中set index_python 中的Set_index 与reset_index

1.set_index

DataFrame可以通过set_index方法,可以设置单索引和复合索引。

DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)

append添加新索引,drop为False,inplace为True时,索引将会还原为列

In [307]: data

Out[307]:

a b c d

0 bar one z 1.0

1 bar two y 2.0

2 foo one x 3.0set

3 foo two w 4.0

In [308]: indexed1 = data.set_index(‘c’)

In [309]: indexed1

Out[309]:

a b d

c

z bar one 1.0

y bar two 2.0

x foo one 3.0

w foo two 4.0

In [310]: indexed2 = data.set_index([‘a’, ‘b’])

In [311]: indexed2

Out[311]:

c d

a b

bar one z 1.0

two y 2.0

foo one x 3.0

2.reset_index

reset_index可以还原索引,从新变为默认的整型索引

DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill=”)

level控制了具体要还原的那个等级的索引

drop为False则索引列会被还原为普通列,否则会丢失

In [318]: data

Out[318]:

c d

a b

bar one z 1.0

two y 2.0

foo one x 3.0

two w 4.0

In [319]: data.reset_index()

Out[319]:

a b c d

0 bar one z 1.0

1 bar two y 2.0

2 foo one x 3.0

3 foo two w 4.0

1.set_index DataFrame可以通过set_index方法,可以设置单索引和复合索引。 DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False) append添加新索引,drop为False,inplace为True时,索引将会还原为列 In [307]: data Out[307]: a b c d 0 bar one z 1.0 1 bar two y 2.0 2 foo one x 3.0set 3 foo two w 4.0 In [308]: indexed1 = data.set_index(‘c’) In [309]: indexed1 Out[309]: a b d c z bar one 1.0 y bar two 2.0 x foo one 3.0 w foo two 4.0 In [310]: indexed2 = data.set_index([‘a’, ‘b’]) In [311]: indexed2 Out[311]: c d a b bar one z 1.0 two y 2.0 foo one x 3.0 2.reset_index reset_index可以还原索引,从新变为默认的整型索引 DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill=”) level控制了具体要还原的那个等级的索引 drop为False则索引列会被还原为普通列,否则会丢失 In [318]: data Out[318]: c d a b bar one z 1.0 two y 2.0 foo one x 3.0 two w 4.0 In [319]: data.reset_index() Out[319]: a b c d 0 bar one z 1.0 1 bar two y 2.0 2 foo one x 3.0 3 foo two w 4.0
经验分享 程序员 微信小程序 职场和发展