计算几何——点到直线的距离、投影点
汇总篇:
点到直线的距离
cos(x)=BA*BC/(|BA|*|BC|)
求AD有很多种方法,可以用勾股定理
这里用的三角函数
x=acos(cos(x))
|AD|=|BA|*sin(x)
如果x是钝角,|AD|=|BA|*sin(pi-x)=|BA|*sin(x)
如果是直角,sin(x) = 1,|AD|=|BA|
点A到直线BC的投影点
方法一
设D(dx,dy)
AD=(dx-ax,dy-ay)
BC=(C.x-B.x,C.y-B.y)
|BA|=sqrt((bx-ax)^2+(by-ay)^2)
令AD*BC=0,(dx-ax)*(cx-bx)+(dy-ay)*(cy-by)=0
|AD|=sqrt((dx-ax)^2+(dy-ay)^2)= |BA|*sin(x)
解上述方程组可解得dx,dy
方法二
BA在BC上的投影等于BA乘以BC的方向向量
D = B +BD
#include<iostream> class point{ public: double x; double y; point(double x_=0,double y_=0):x(x_),y(y_){} friend const point operator+(const point& p1,const point& p2){ return point(p1.x+p2.x,p1.y+p2.y); }; friend const point operator-(const point& p1,const point& p2){ return point(p1.x-p2.x,p1.y-p2.y); }; friend const point operator*(const point& p,const double& m){ return point(p.x*m,p.y*m); }; friend const point operator*(const double& m,const point& p){ return point(p.x*m,p.y*m); }; friend const point operator/(const point& p,const double& m){ return point(p.x/m,p.y/m); }; friend ostream& operator <<(ostream& out,point& a){ printf("(%lf,%lf)",a.x,a.y); return out; }; }; typedef point vect2;//重命名,向量也是用坐标表示 class line{ public: point start; point end; line(point s=point(0,0),point e=point(0,0)):start(s),end(e){} }; double dot(point O,point A,point B){//点乘 double oa_x=A.x-O.x; double oa_y=A.y-O.y; double ob_x=B.x-O.x; double ob_y=B.y-O.y; return oa_x*ob_x+oa_y*ob_y; } double dis(const point &p1,const point &p2){//求两点之间距离 double ans=(p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y); return sqrt(ans); } double dis2(const point &p1,const point &p2){//求两点之间距离的平方 return(p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y); } //点到直线的距离 double disOfPointToLine(point O,line l){ double cos0=dot(l.start,O,l.end)/(dis(O,l.start)*dis(l.start,l.end)); return dis(O,l.start)*sin(acos(cos0)); } //点在直线上的投影 point shadowPointOfPointToLine(point A,line l){//投影点出了问题 point B = l.start; point C = l.end; point D; vect2 BC = C - B; vect2 BA = B - A; vect2 BD = BC * BA /dis2(B,C) * BC; D = B + BD; return D; }
上一篇:
IDEA上Java项目控制台中文乱码