攻不下dfs不参加比赛(五)
为什么练dfs
相信学过数据结构的朋友都知道dfs(深度优先搜索)是里面相当重要的一种搜索算法,可能直接说大家感受不到有条件的大家可以去看看一些算法比赛。这些比赛中每一届或多或少都会牵扯到dfs,可能提到dfs大家都知道但是我们为了避免眼高手低有的东西看着自己很明白就是写不出来。为了避免这种尴尬我们这几天乘着这个活动练练,好了我们话不多说开始肥学。
题目
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。 说明: 叶子节点是指没有子节点的节点。 示例: 给定二叉树 [3,9,20,null,null,15,7], 3 / 9 20 / 15 7 返回它的最大深度 3 。
思路:如果我们知道了左子树和右子树的最大深度 ll 和 rr,那么该二叉树的最大深度即为 max(l,r) + 1 而左子树和右子树的最大深度又可以以同样的方式进行计算。因此我们可以用「深度优先搜索」的方法来计算二叉树的最大深度。具体而言,在计算当前二叉树的最大深度时,可以先递归计算出其左子树和右子树的最大深度,然后在 O(1)O(1) 时间内计算出当前二叉树的最大深度。递归在访问到空节点时退出。
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public int check(TreeNode root,int sum){ if(root==null)return sum; return Math.max(check(root.left,sum+1),check(root.right,sum+1)); } public int maxDepth(TreeNode root) { int sum=0;//用来记录深度 return check(root,sum); } }
总结
这道题也可以用广度优先搜索,但是没有深度优先简单我贴上代码大家可以自己揣摩一下。
class Solution { public int maxDepth(TreeNode root) { if (root == null) { return 0; } Queue<TreeNode> queue = new LinkedList<TreeNode>(); queue.offer(root); int ans = 0; while (!queue.isEmpty()) { int size = queue.size(); while (size > 0) { TreeNode node = queue.poll(); if (node.left != null) { queue.offer(node.left); } if (node.right != null) { queue.offer(node.right); } size--; } ans++; } return ans; } }