python数据分析与挖掘(四)---matplotlib散点图
Python教程网 >>:
散点图(scatter)
我们需要知道不同的统计图的意义,以此来决定选择哪种统计图来呈现我们的数据。
1 常见图形种类及意义
-
折线图:以折线的上升或下降来表示统计数量的增减变化的统计图 特点:能够显示数据的变化趋势,反映事物的变化情况。(变化) 散点图:用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。 特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律) 柱状图:排列在工作表的列或行中的数据可以绘制到柱状图中。 特点:绘制连离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别。(统计/对比) 直方图:由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据范围,纵轴表示分布情况。 特点:绘制连续性的数据展示一组或者多组数据的分布状况(统计) 饼图:用于表示不同分类的占比情况,通过弧度大小来对比各种分类。 特点:分类数据的占比情况(占比)
2 散点图绘制
需求:探究房屋面积和房屋价格的关系
房屋面积数据:
x = [225.98, 247.07, 253.14, 457.85, 241.58, 301.01, 20.67, 288.64, 163.56, 120.06, 207.83, 342.75, 147.9 , 53.06, 224.72, 29.51, 21.61, 483.21, 245.25, 399.25, 343.35]
房屋价格数据:
y = [196.63, 203.88, 210.75, 372.74, 202.41, 247.61, 24.9 , 239.34, 140.32, 104.15, 176.84, 288.23, 128.79, 49.64, 191.74, 33.1 , 30.74, 400.02, 205.35, 330.64, 283.45]
代码:
# 1)准备数据 x = [225.98, 247.07, 253.14, 457.85, 241.58, 301.01, 20.67, 288.64, 163.56, 120.06, 207.83, 342.75, 147.9 , 53.06, 224.72, 29.51, 21.61, 483.21, 245.25, 399.25, 343.35] y = [196.63, 203.88, 210.75, 372.74, 202.41, 247.61, 24.9 , 239.34, 140.32, 104.15, 176.84, 288.23, 128.79, 49.64, 191.74, 33.1 , 30.74, 400.02, 205.35, 330.64, 283.45] # 2)创建画布 plt.figure(figsize=(20, 8), dpi=100) # 3)绘制散点图 plt.scatter(x, y) # 4)显示图像 plt.show()