python数据分析与挖掘(四)---matplotlib散点图

Python教程网 >>:

散点图(scatter)

我们需要知道不同的统计图的意义,以此来决定选择哪种统计图来呈现我们的数据。

1 常见图形种类及意义

    折线图:以折线的上升或下降来表示统计数量的增减变化的统计图 特点:能够显示数据的变化趋势,反映事物的变化情况。(变化) 散点图:用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。 特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律) 柱状图:排列在工作表的列或行中的数据可以绘制到柱状图中。 特点:绘制连离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别。(统计/对比) 直方图:由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据范围,纵轴表示分布情况。 特点:绘制连续性的数据展示一组或者多组数据的分布状况(统计) 饼图:用于表示不同分类的占比情况,通过弧度大小来对比各种分类。 特点:分类数据的占比情况(占比)

2 散点图绘制

需求:探究房屋面积和房屋价格的关系

房屋面积数据:

x = [225.98, 247.07, 253.14, 457.85, 241.58, 301.01,  20.67, 288.64,
       163.56, 120.06, 207.83, 342.75, 147.9 ,  53.06, 224.72,  29.51,
        21.61, 483.21, 245.25, 399.25, 343.35]

房屋价格数据:

y = [196.63, 203.88, 210.75, 372.74, 202.41, 247.61,  24.9 , 239.34,
       140.32, 104.15, 176.84, 288.23, 128.79,  49.64, 191.74,  33.1 ,
        30.74, 400.02, 205.35, 330.64, 283.45]

代码:

# 1)准备数据
x = [225.98, 247.07, 253.14, 457.85, 241.58, 301.01,  20.67, 288.64,
       163.56, 120.06, 207.83, 342.75, 147.9 ,  53.06, 224.72,  29.51,
        21.61, 483.21, 245.25, 399.25, 343.35]
y = [196.63, 203.88, 210.75, 372.74, 202.41, 247.61,  24.9 , 239.34,
       140.32, 104.15, 176.84, 288.23, 128.79,  49.64, 191.74,  33.1 ,
        30.74, 400.02, 205.35, 330.64, 283.45]

# 2)创建画布
plt.figure(figsize=(20, 8), dpi=100)

# 3)绘制散点图
plt.scatter(x, y)

# 4)显示图像
plt.show()
经验分享 程序员 微信小程序 职场和发展