爬子第一篇:zol手机型号参数抓取
目标
爬取url:https://detail.zol.com.cn/cell_phone_advSearch/subcate57_1_s8975_1_1__2.html 数据需求: 抓取主流品牌的所有手机机型和相关参数。这应该是我写过的第一个正式的爬虫。
方法论
不需要登陆。没有加密参数。只需要cookie和ua就能获取。通过selenium获取cookie,通过分页获取每个手机的url【注:详情页的url需要手动拼接】,再获取详情页的参数。 提前准备好要抓取的列表。包括品牌、url、页数。如: brand,url,pagenum 华为,https://detail.zol.com.cn/cell_phone_advSearch/subcate57_1_m613_1_1__{}.html,24 vivo,https://detail.zol.com.cn/cell_phone_advSearch/subcate57_1_m1795_1_1__{}.html,15 oppo,https://detail.zol.com.cn/cell_phone_advSearch/subcate57_1_m1673_1_1__{}.html,13
代码
import csv
import json
import time
import pandas as pd
from selenium import webdriver
import requests
from lxml import etree
def down_cookie():
url = https://detail.zol.com.cn/
driver = webdriver.Chrome(executable_path=/Users/fangli/Downloads/chromedriver)
driver.get(url)
dictCookies = driver.get_cookies() # 核心
jsonCookies = json.dumps(dictCookies)
print(jsonCookies)
# 登录完成后将cookie保存到本地文件
with open(cookies.json, w) as f:
f.write(jsonCookies)
time.sleep(3)
driver.close()
def get_cookie():
with open(cookies.json, r, encoding=utf-8) as f:
listCookies = json.loads(f.read())
cookie = [item["name"] + "=" + item["value"] for item in listCookies]
cookiestr = ; .join(item for item in cookie)
return cookiestr
def get_response(pageurl):
cookie=get_cookie()
headers = {
"user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.84 Safari/537.36"
, "cookie": cookie
}
try:
response = requests.get(url=pageurl, headers=headers).text
return response
except:
print(更换cookie)
down_cookie()
get_response(pageurl)
def get_datail(detail_url):
response = get_response(detail_url)
html = etree.HTML(response)
phone_name = str(html.xpath(//h1[@class="product-model__name"]/text())[0]).replace(参数,)
with open(file=手机参数数据采集全量.csv,encoding=utf-8,mode=a) as files:
for i in range(1,11):
trs = html.xpath(//div[@class="detailed-parameters"]/table[{}]/tr.format(i))
for tr in trs:
try:
k=tr.xpath("./th/span/text() | ./th/a/text()")[0]
v = str(tr.xpath(./td/span/text() | ./td/span/a/text())[0]).replace(>,).replace(,,;)
files.write({},{},{}.format(phone_name,k,v))
files.write(
)
print(phone_name,k,v)
except:
pass
#获取pagelist中的url
def get_pagelist(pageurl):
response = get_response(pageurl)
html = etree.HTML(response)
result = html.xpath(//*[@id="result_box"]/div[2]/ul/li)
for i in result:
proname = str(i.xpath(./dl/dt/a/@id)[0]).replace(proName_,)
prename = int(proname[0:4])+1
detail_url = https://detail.zol.com.cn/{}/{}/param.shtml.format(prename,proname)
get_datail(detail_url)
def get_data():
df=pd.read_csv(brandlist.csv)
for i in range(df.shape[0]):
brand = df.iat[i,0]
url = df.iat[i,1]
pagenum = int(df.iat[i,2])
for j in range(1,pagenum+1):
pageurl = str(url).format(j)
print(brand,pageurl,j)
get_pagelist(pageurl)
if __name__ == __main__:
get_data()
下一篇:
利用PfamScan寻找同源基因家族
