使用深度神经网络训练手写数字识别
下载数据
import tensorflow as tf from tensorflow import keras (X_train_full, y_train_full), (X_test, y_test) = keras.datasets.mnist.load_data()
数据处理
X_valid, X_train = X_train_full[:5000] / 255., X_train_full[5000:] / 255. y_valid, y_train = y_train_full[:5000], y_train_full[5000:]
简单查看数据
import matplotlib.pyplot as plt n_rows = 4 n_cols = 10 plt.figure(figsize=(n_cols * 1.2, n_rows * 1.2)) for row in range(n_rows): for col in range(n_cols): index = n_cols * row + col plt.subplot(n_rows, n_cols, index + 1)#要生成4行10列,这是第index + 1个图 plt.imshow(X_train[index], cmap="binary", interpolation="nearest") plt.axis(off) plt.title(y_train[index], fontsize=12) plt.subplots_adjust(wspace=0.2, hspace=0.5)#调整子图布局 plt.show()
寻找合适的学习率
#设置回调函数,每个数据训练轮次,将学习率*factor K = keras.backend class ExponentialLearningRate(keras.callbacks.Callback): def __init__(self, factor): self.factor = factor self.rates = [] self.losses = [] def on_batch_end(self, batch, logs): self.rates.append(K.get_value(self.model.optimizer.lr)) self.losses.append(logs["loss"]) K.set_value(self.model.optimizer.lr, self.model.optimizer.lr * self.factor) import numpy as np keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) #设置神经网络参数 model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="relu"), keras.layers.Dense(100, activation="relu"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(learning_rate=1e-3), metrics=["accuracy"]) expon_lr = ExponentialLearningRate(factor=1.005)
训练模型找出最优学习率
history = model.fit(X_train, y_train, epochs=1, validation_data=(X_valid, y_valid), callbacks=[expon_lr]) plt.plot(expon_lr.rates, expon_lr.losses) plt.gca().set_xscale(log)#设置为对数坐标 plt.hlines(min(expon_lr.losses), min(expon_lr.rates), max(expon_lr.rates))#绘制水平线,即绘制最小值的水平线 plt.axis([min(expon_lr.rates), max(expon_lr.rates), 0, expon_lr.losses[0]])#设置XY轴范围 plt.grid()#显示网格线 plt.xlabel("Learning rate") plt.ylabel("Loss")
可以看到,学习率在0.6之后就变动较大,因此最优学习率取一半即0.3
训练神经网络
keras.backend.clear_session() np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="relu"), keras.layers.Dense(100, activation="relu"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=3e-1), metrics=["accuracy"])
#设置保 存 路 径 import os run_index = 1 # increment this at every run run_logdir = os.path.join(os.curdir, "my_mnist_logs", "run_{:03d}".format(run_index)) run_logdir
开始训练
early_stopping_cb = keras.callbacks.EarlyStopping(patience=20)#patience: 没有进步的训练轮数,在这之后训练就会被停止 checkpoint_cb = keras.callbacks.ModelCheckpoint("my_mnist_model.h5", save_best_only=True)#在每个训练期之后保存模型。 tensorboard_cb = keras.callbacks.TensorBoard(run_logdir)#这个回调函数为 Tensorboard 编写一个日志 history = model.fit(X_train, y_train, epochs=100, validation_data=(X_valid, y_valid), callbacks=[checkpoint_cb, early_stopping_cb, tensorboard_cb])
在测试集上评估
model = keras.models.load_model("my_mnist_model.h5") # rollback to best model model.evaluate(X_test, y_test)
下一篇:
Go 将配置文件打包进二进制