R语言系列学习(各种检验)

1、W检验(Shapiro–Wilk (夏皮罗–威克尔 ) W统计量检验)

检验数据是否符合正态分布,R函数:shapiro.test(). 结果含义:当p值小于某个显著性水平α(比如0.05)时,则认为

样本不是来自正态分布的总体,否则则承认样本来自正态分布的总体。

2、K检验(经验分布的Kolmogorov-Smirnov检验)

R函数:ks.test(),如果P值很小,说明拒绝原假设,表明数据不符合F(n,m)分布。

3、相关性检验: R函数:cor.test()

cor.test(x, y, alternative = c("two.sided", "less", "greater"), method = c("pearson", "kendall", "spearman"), exact = NULL, conf.level = 0.95, ...)

结果含义:如果p值很小,则拒绝原假设,认为x,y是相关的。否则认为是不相关的。

4、T检验 用于正态总体均值假设检验,单样本,双样本都可以。

t.test()

t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, var.equal &

经验分享 程序员 微信小程序 职场和发展