多元线性回归算法(有多个特征的线性回归算法)
多元线性回归,假设我们有m个样本,n个特征,对于每一个样本的结果,每个特征都需要占一定的权重即:
当样本集为:
输出结果为:
基于多个特征得到的预测值为:
假设有矩阵
多元线性回归的正规方程:
多元线性回归正规方程解的代码实现:
"""coding:utf-8""" import numpy as np from play_ML.metrics import r2_score class LinearRegression(object): """初始化Linear Regression模型""" def __init__(self): self.coef = None self.intercept = None self._theta = None def fit(self,x_train,y_train): """根据训练数据集X_train, y_train训练Linear Regression模型""" assert x_train.shape[0] == y_train.shape[0], "the size of X_train must be equal to the size of y_train" x_b = np.hstack([np.ones((len(x_train),1)),x_train]) self._theta = np.linalg.inv(x_b.T.dot(x_b)).dot(x_b.T).dot(y_train) self.intercept = self._theta[0] self.coef = self._theta[1:] return self def predict(self,x_predict): """给定待预测数据集x_predict,返回表示x_predict的结果集向量""" assert self.intercept_ is not None and self.coef_ is not None, "must fit before predict!" assert x_predict.shape[1] == len(self.coef_), "the feature number of X_predict must be equal to X_train" x_b = np.hstack([np.ones((len(x_predict),1)),x_predict]) return x_b.dot(self._theta) def score(self,x_test,y_test): """根据测试集x_test和y_test,确定当前模型的准确度""" y_predict = self.predict(x_test) return r2_score(y_test,y_predict) def __repr__(self): return "LinearRegression"
下一篇:
【计组】CPU的工作过程