目标跟踪中的卡尔曼滤波kalman_filter
本文主要是讲目标跟踪sort中的卡尔曼滤波在的基础上,怎样实现如下过程: 1、怎样predict ? 2、怎样update ? 3、track.hit_streak怎样实现连击 >= min_hits时,赋予该track一个id ? 4、track.time_since_update > max_age时,删除该轨迹track的实现方式? 具体的实现过程讲解: python使用卡尔曼滤波的几个包: 1、从opencv导入 2、从filterpy导入 3、自己写一个 class Kalman() 代码中用到的卡尔曼滤波器类from filterpy.kalman import KalmanFilter: 查看代码详细注释,应该能搞懂。
# -*- coding: utf-8 -*- """ Time : 2022/5/13 11:22 Author : cong """ from filterpy.kalman import KalmanFilter import numpy as np def convert_bbox_to_z(bbox): """ Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is the aspect ratio """ w = bbox[2] - bbox[0] h = bbox[3] - bbox[1] x = bbox[0] + w / 2. y = bbox[1] + h / 2. s = w * h # scale is just area r = w / float(h) return np.array([x, y, s, r]).reshape((4, 1)) def convert_x_to_bbox(x, score=None): """ Takes a bounding box in the centre form [x,y,s,r] and returns it in the form [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right """ w = np.sqrt(x[2] * x[3]) h = x[2] / w if score is None: return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2.]).reshape((1, 4)) else: return np.array([x[0] - w / 2., x[1] - h / 2., x[0] + w / 2., x[1] + h / 2., score]).reshape((1, 5)) class KalmanBoxTracker(object): """ This class represents the internal state of individual tracked objects observed as bbox. """ count = 0 def __init__(self, bbox): """ Initialises a tracker using initial bounding box. """ # define constant velocity model # x= [x,y,s,r,vx,vy,vs], z=[x,y,s,r] # 初始化卡尔曼滤波器参数,7个状态变量和4个观测输入,运动形式和转换矩阵的确定都是基于匀速运动模型 self.kf = KalmanFilter(dim_x=7, dim_z=4) # 状态转移矩阵F self.kf.F = np.array( [[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]]) # 观测矩阵 self.kf.H = np.array( [[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]]) # 观测噪声协方差矩阵 self.kf.R[2:, 2:] *= 10. # 先验估计协方差 self.kf.P[4:, 4:] *= 1000. # give high uncertainty to the unobservable initial velocities self.kf.P *= 10. # 状态噪声协方差 self.kf.Q[-1, -1] *= 0.01 self.kf.Q[4:, 4:] *= 0.01 self.kf.x[:4] = convert_bbox_to_z(bbox) self.time_since_update = 0 self.id = KalmanBoxTracker.count KalmanBoxTracker.count += 1 self.history = [] self.hits = 0 self.hit_streak = 0 self.age = 0 def update(self, bbox): """ Updates the state vector with observed bbox. """ self.time_since_update = 0 self.history = [] self.hits += 1 self.hit_streak += 1 self.kf.update(convert_bbox_to_z(bbox)) def predict(self): """ Advances the state vector and returns the predicted bounding box estimate. """ if (self.kf.x[6] + self.kf.x[2]) <= 0: self.kf.x[6] *= 0.0 self.kf.predict() self.age += 1 if self.time_since_update > 0: self.hit_streak = 0 self.time_since_update += 1 self.history.append(convert_x_to_bbox(self.kf.x)) return self.history[-1] def get_state(self): """ Returns the current bounding box estimate. """ return convert_x_to_bbox(self.kf.x)
参考: