Python_文本分析_困惑度计算和一致性检验
在做LDA的过程中比较比较难的问题就是主题数的确定,下面介绍困惑度、一致性这两种方法的实现。
-
其中的一些LDA的参数需要结合自己的实际进行设定 直接计算出的log_perplexity是负值,是困惑度经过对数去相反数得到的。
import csv import datetime import re import pandas as pd import numpy as np import jieba import matplotlib.pyplot as plt import jieba.posseg as jp, jieba import gensim from snownlp import seg from snownlp import SnowNLP from snownlp import sentiment from gensim import corpora, models from gensim.models import CoherenceModel from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import NMF, LatentDirichletAllocation import warnings warnings.filterwarnings("ignore") comment = pd.read_csv(r"good_1", header = 0, index_col = False, engine=python,encoding = utf-8) csv_data = comment[[(len(str(x)) > 100) for x in comment[segment]]] print(csv_data.shape) # 构造corpus train = [] for i in range(csv_data.shape[0]): comment = csv_data.iloc[i,7].split() train.append(comment) id2word = corpora.Dictionary(train) corpus = [ id2word.doc2bow(sentence) for sentence in train] # 一致性和困惑度计算 coherence_values = [] perplexity_values = [] model_list = [] for topic in range(15): lda_model = gensim.models.LdaMulticore(corpus = corpus, num_topics=topic+1, id2word = id2word, random_state=100, chunksize=100, passes=10, per_word_topics=True) perplexity = pow(2,-lda_model.log_perplexity(corpus)) print(perplexity,end= ) perplexity_values.append(round(perplexity,3)) model_list.append(lda_model) coherencemodel = CoherenceModel(model=lda_model, texts=train, dictionary=id2word, coherence=c_v) coherence_values.append(round(coherencemodel.get_coherence(),3))
下面展示一种一致性可视化的方法
x = range(1,21) plt.plot(x, coherence_values) plt.xlabel("Num Topics") plt.ylabel("Coherence score") plt.legend(("coherence_values"), loc=best) plt.show()