机器学习实战:朴素贝叶斯分类器
实例:使用朴素贝叶斯进行文档分类
构建一个过滤器,过滤在线社区的留言板中带有侮辱类的语言。
1、准备数据:从文本中构建词向量
def loadDataSet():
postingList=[[my, dog, has, flea, problems, help, please],
[maybe, not, take, him, to, dog, park, stupid],
[my, dalmation, is, so, cute, I, love, him],
[stop, posting, stupid, worthless, garbage],
[mr, licks, ate, my, steak, how, to, stop, him],
[quit, buying, worthless, dog, food, stupid]]
classVec=[0,1,0,1,0,1] #1代表侮辱性文字,0代表正常言论
return postingList,classVec
def createVocabList(dataSet):
vocabSet=set([])
for document in dataSet:
vocabSet=vocabSet|set(document) #取并集
return list(vocabSet)
def setOfWords2Vec(vocabList,inputSet):
returnVec=[0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)]=1
else:
print("the word:%s is not in my vocabulary!" %word)
return returnVec
2、训练算法:从词向量计算概率
公式:
import numpy as np
def trainNB0(trainMatrix,trainCategory):
numTrainDocs=len(trainMatrix)
numWords=len(trainMatrix[0])
pAbusive=sum(trainCategory)/float(numTrainDocs)
p0Num=np.zeros(numWords)
p1Num=np.zeros(numWords)
p0Denom=0.0
p1Denom=0.0
for i in range(numTrainDocs):
if trainCategory[i]==1:
p1Num+=trainMatrix[i]
p1Denom+=sum(trainMatrix[i])
else:
p0Num+=trainMatrix[i]
p0Denom+=sum(trainMatrix[i])
p1Vect=p1Num/p1Denom
p0Vect=p0Num/p0Denom
return p0Vect,p1Vect,pAbusive
3、测试算法:根据现实情况修改分类器
def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = np.ones(numWords); p1Num = np.ones(numWords) #change to ones()
p0Denom = 2.0; p1Denom = 2.0 #change to 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = np.log(p1Num/p1Denom) #change to log()
p0Vect = np.log(p0Num/p0Denom) #change to log()
return p0Vect,p1Vect,pAbusive
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
#运用朴素贝叶斯公式:
p1=sum(vec2Classify*p1Vec)+np.log(pClass1) #p1Vec已经取过对数,故pClass1也取对数,该步骤为元素相乘,log(ab)=log(a)+log(b)
p0=sum(vec2Classify*p0Vec)+np.log(1.0-pClass1) #pClass0=1.0-pClass1
if p1>p0:
return 1
else:
return 0
def testingNB():
listOPosts,listClasses=loadDataSet()
myVocabList=createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList,postinDoc))
p0V,p1V,pAb=trainNB0(np.array(trainMat),np.array(listClasses))
testEntry=[love,my,dalmation]
thisDoc=np.array(setOfWords2Vec(myVocabList,testEntry))
print(testEntry,classified as:,classifyNB(thisDoc,p0V,p1V,pAb))
testEntry=[stupid,garbage]
thisDoc=np.array(setOfWords2Vec(myVocabList,testEntry))
print(testEntry,classified as:,classifyNB(thisDoc,p0V,p1V,pAb))
上一篇:
IDEA上Java项目控制台中文乱码
