机器学习实战:朴素贝叶斯分类器
实例:使用朴素贝叶斯进行文档分类
构建一个过滤器,过滤在线社区的留言板中带有侮辱类的语言。
1、准备数据:从文本中构建词向量
def loadDataSet(): postingList=[[my, dog, has, flea, problems, help, please], [maybe, not, take, him, to, dog, park, stupid], [my, dalmation, is, so, cute, I, love, him], [stop, posting, stupid, worthless, garbage], [mr, licks, ate, my, steak, how, to, stop, him], [quit, buying, worthless, dog, food, stupid]] classVec=[0,1,0,1,0,1] #1代表侮辱性文字,0代表正常言论 return postingList,classVec def createVocabList(dataSet): vocabSet=set([]) for document in dataSet: vocabSet=vocabSet|set(document) #取并集 return list(vocabSet) def setOfWords2Vec(vocabList,inputSet): returnVec=[0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)]=1 else: print("the word:%s is not in my vocabulary!" %word) return returnVec
2、训练算法:从词向量计算概率
公式:
import numpy as np def trainNB0(trainMatrix,trainCategory): numTrainDocs=len(trainMatrix) numWords=len(trainMatrix[0]) pAbusive=sum(trainCategory)/float(numTrainDocs) p0Num=np.zeros(numWords) p1Num=np.zeros(numWords) p0Denom=0.0 p1Denom=0.0 for i in range(numTrainDocs): if trainCategory[i]==1: p1Num+=trainMatrix[i] p1Denom+=sum(trainMatrix[i]) else: p0Num+=trainMatrix[i] p0Denom+=sum(trainMatrix[i]) p1Vect=p1Num/p1Denom p0Vect=p0Num/p0Denom return p0Vect,p1Vect,pAbusive
3、测试算法:根据现实情况修改分类器
def trainNB0(trainMatrix,trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory)/float(numTrainDocs) p0Num = np.ones(numWords); p1Num = np.ones(numWords) #change to ones() p0Denom = 2.0; p1Denom = 2.0 #change to 2.0 for i in range(numTrainDocs): if trainCategory[i] == 1: p1Num += trainMatrix[i] p1Denom += sum(trainMatrix[i]) else: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) p1Vect = np.log(p1Num/p1Denom) #change to log() p0Vect = np.log(p0Num/p0Denom) #change to log() return p0Vect,p1Vect,pAbusive def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): #运用朴素贝叶斯公式: p1=sum(vec2Classify*p1Vec)+np.log(pClass1) #p1Vec已经取过对数,故pClass1也取对数,该步骤为元素相乘,log(ab)=log(a)+log(b) p0=sum(vec2Classify*p0Vec)+np.log(1.0-pClass1) #pClass0=1.0-pClass1 if p1>p0: return 1 else: return 0 def testingNB(): listOPosts,listClasses=loadDataSet() myVocabList=createVocabList(listOPosts) trainMat=[] for postinDoc in listOPosts: trainMat.append(setOfWords2Vec(myVocabList,postinDoc)) p0V,p1V,pAb=trainNB0(np.array(trainMat),np.array(listClasses)) testEntry=[love,my,dalmation] thisDoc=np.array(setOfWords2Vec(myVocabList,testEntry)) print(testEntry,classified as:,classifyNB(thisDoc,p0V,p1V,pAb)) testEntry=[stupid,garbage] thisDoc=np.array(setOfWords2Vec(myVocabList,testEntry)) print(testEntry,classified as:,classifyNB(thisDoc,p0V,p1V,pAb))
上一篇:
IDEA上Java项目控制台中文乱码