Affinity Propagation Clustering (AP聚类)算法实例演示
Reference: Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb. 2007
输出:
Estimated number of clusters: 3 Homogeneity: 0.872 Completeness: 0.872 V-measure: 0.872 Adjusted Rand Index: 0.912 Adjusted Mutual Information: 0.871 Silhouette Coefficient: 0.753
from sklearn.cluster import AffinityPropagation from sklearn import metrics from sklearn.datasets import make_blobs # ############################################################################# # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs( n_samples=300, centers=centers, cluster_std=0.5, random_state=0 ) # ############################################################################# # Compute Affinity Propagation af = AffinityPropagation(preference=-50, random_state=0).fit(X) cluster_centers_indices = af.cluster_centers_indices_ labels = af.labels_ n_clusters_ = len(cluster_centers_indices) print("Estimated number of clusters: %d" % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print( "Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels) ) print( "Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels, metric="sqeuclidean") ) # ############################################################################# # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.close("all") plt.figure(1) plt.clf() colors = cycle("bgrcmykbgrcmykbgrcmykbgrcmyk") for k, col in zip(range(n_clusters_), colors): class_members = labels == k cluster_center = X[cluster_centers_indices[k]] plt.plot(X[class_members, 0], X[class_members, 1], col + ".") plt.plot( cluster_center[0], cluster_center[1], "o", markerfacecolor=col, markeredgecolor="k", markersize=14, ) for x in X[class_members]: plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col) plt.title("Estimated number of clusters: %d" % n_clusters_) plt.show()
上一篇:
IDEA上Java项目控制台中文乱码