CVPR2022目标检测文章汇总+创新点简要分析
大概总结了一下CVPR2022目标检测领域的文章,并未包括跨域和3D目标检测。 个人总结,难免有疏漏,大家参考一下就好。
CVPR 2022
一、常规目标检测
1. MViTv2: Improved Multiscale Vision Transformers for Classification and Detection
2. Accelerating DETR Convergence via Semantic-Aligned Matching
3. AdaMixer: A Fast-Converging Query-Based Object Detector
4. DESTR: Object Detection With Split Transformer
5. R ( D e t ) 2 R(Det)^2 R(Det)2: Randomized Decision Routing for Object Detection
二、半监督目标检测
6. Dense Learning based Semi-Supervised Object Detection
7. Active Teacher for Semi-Supervised Object Detection
8.Group R-CNN for Weakly Semi-Supervised Object Detection With Points
9.Scale-Equivalent Distillation for Semi-Supervised Object Detection
10.Unbiased Teacher v2: Semi-Supervised Object Detection for Anchor-Free and Anchor-Based Detectors
11.MUM: Mix Image Tiles and UnMix Feature Tiles for Semi-Supervised Object Detection
三、少样本目标检测
12. Label, Verify, Correct: A Simple Few Shot Object Detection Method
13. Semantic-aligned Fusion Transformer for One-shot Object Detection
14. Balanced and Hierarchical Relation Learning for One-shot Object Detection
- 提出一个简单而有效的Ratio-Preserving Loss,以解决正负样本不平衡的问题,从而实现IHR模块的平衡和有效学习。
18. SIOD: Single Instance Annotated Per Category Per Image for Object Detection
-
创新点 提出了 SIOD 任务,节省了标注成本。 提出挖掘未标记实例的 DMiner 框架,提高对伪标记的容忍度。