opencv: cv2.resize 探究(源码)
我们 习惯的坐标表示 是 先 x 横坐标,再 y 纵坐标。在图像处理中,这种惯性思维尤其需要担心。
因为在计算机中,图像是以矩阵的形式保存的,先行后列。所以,一张 宽×高×颜色通道=480×256×3 的图片会保存在一个 256×480×3 的三维张量中。图像处理时也是按照这种思想进行计算的(其中就包括 OpenCV 下的图像处理),即 高×宽×颜色通道。
但是问题来了,cv2.resize这个api却是个小例外。因为它的参数输入却是 宽×高×颜色通道。
查看官方文档 :
resize Resizes an image. C++: void resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR )¶ Python: cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst C: void cvResize(const CvArr* src, CvArr* dst, int interpolation=CV_INTER_LINEAR ) Python: cv.Resize(src, dst, interpolation=CV_INTER_LINEAR) → None Parameters: src – input image. dst – output image; it has the size dsize (when it is non-zero) or the size computed from src.size(), fx, and fy; the type of dst is the same as of src. dsize – output image size; if it equals zero, it is computed as: exttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))} Either dsize or both fx and fy must be non-zero.
由以下语段可知, cv2.resize 的 dsize 的参数输入是 x轴×y轴,即 宽×高:
dst – output image; it has the size dsize (when it is non-zero) or the size computed from src.size(), fx, and fy; the type of dst is the same as of src.
自己写了一个代码实例来验证它:
import cv2 import numpy as np import random seq = [random.randint(0, 255) for _ in range(256*480*3)] mat = np.resize(seq, new_shape=[256, 480, 3]) print (mat.shape = {}.format(mat.shape)) cv2.imwrite(origin_pic.jpg, mat) origin_pic = cv2.imread(./origin_pic.jpg) print (origin_pic.shape = {}.format(origin_pic.shape)) resize_pic = cv2.resize(src=origin_pic, dsize=(int(origin_pic.shape[1] * 2), int(origin_pic.shape[0] * 1)) ) print (resize_pic.shape = {}.format(resize_pic.shape)) cv2.imshow(resize_pic, resize_pic) cv2.waitKey(0) cv2.destroyAllWindows()
Output:
mat.shape = (256, 480, 3) origin_pic.shape = (256, 480, 3) resize_pic.shape = (256, 960, 3)
成功应验了文档里的参数说明。
上一篇:
IDEA上Java项目控制台中文乱码