高斯消元法求矩阵的逆
逆矩阵:设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。 矩阵求逆一般有两种方法,一个是伴随矩阵法,一个是初等变换法,也就是高斯消元法。这里主要讲高斯消元法的编程方法。 由条件AB=BA以及矩阵乘法的定义可知,矩阵A和B都是方阵。再由条件AB=I以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为0。也就是说,这两个矩阵的秩等于它们的级数(或称为阶,也就是说,A与B都是n imes n方阵,且rank(A) = rank(B) = n)。换句话说,这两个矩阵可以只经由初等行变换,或者只经由初等列变换,变为单位矩阵。
因为对矩阵A施以初等行变换(初等列变换)就相当于在A的左边(右边)乘以相应的初等矩阵,所以我们可以同时对A和I施以相同的初等行变换(初等列变换)。这样,当矩阵A被变为I时,I就被变为A的逆阵B。
bool Gauss(float A[][N], float B[][N], int n) { int i, j, k; float max, temp; float t[N][N]; //临时矩阵 //将A矩阵存放在临时矩阵t[n][n]中 for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { t[i][j] = A[i][j]; } } //初始化B矩阵为单位阵 for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { B[i][j] = (i == j) ? (float)1 : 0; } } for (i = 0; i < n; i++) { //寻找主元 max = t[i][i]; k = i; for (j = i + 1; j < n; j++) { if (fabs(t[j][i]) > fabs(max)) { max = t[j][i]; k = j; } } //如果主元所在行不是第i行,进行行交换 if (k != i) { for (j = 0; j < n; j++) { temp = t[i][j]; t[i][j] = t[k][j]; t[k][j] = temp; //B伴随交换 temp = B[i][j]; B[i][j] = B[k][j]; B[k][j] = temp; } } //判断主元是否为0, 若是, 则矩阵A不是满秩矩阵,不存在逆矩阵 if (t[i][i] == 0) { printf("There is no inverse matrix!"); return false; } //消去A的第i列除去i行以外的各行元素 temp = t[i][i]; for (j = 0; j < n; j++) { t[i][j] = t[i][j] / temp; //主对角线上的元素变为1 B[i][j] = B[i][j] / temp; //伴随计算 } for (j = 0; j < n; j++) //第0行->第n行 { if (j != i) //不是第i行 { temp = t[j][i]; for (k = 0; k < n; k++) //第j行元素 - i行元素*j列i行元素 { t[j][k] = t[j][k] - t[i][k] * temp; B[j][k] = B[j][k] - B[i][k] * temp; } } } } return true; }
完整的测试代码如下: